1,046 research outputs found

    The IT Consulting Process Through a Knowledge Management Lens

    Get PDF

    Core Hunter II: fast core subset selection based on multiple genetic diversity measures using Mixed Replica search

    Get PDF
    BACKGROUND: Sampling core subsets from genetic resources while maintaining as much as possible the genetic diversity of the original collection is an important but computationally complex task for gene bank managers. The Core Hunter computer program was developed as a tool to generate such subsets based on multiple genetic measures, including both distance measures and allelic diversity indices. At first we investigate the effect of minimum (instead of the default mean) distance measures on the performance of Core Hunter. Secondly, we try to gain more insight into the performance of the original Core Hunter search algorithm through comparison with several other heuristics working with several realistic datasets of varying size and allelic composition. Finally, we propose a new algorithm (Mixed Replica search) for Core Hunter II with the aim of improving the diversity of the constructed core sets and their corresponding generation times. RESULTS: Our results show that the introduction of minimum distance measures leads to core sets in which all accessions are sufficiently distant from each other, which was not always obtained when optimizing mean distance alone. Comparison of the original Core Hunter algorithm, Replica Exchange Monte Carlo (REMC), with simpler heuristics shows that the simpler algorithms often give very good results but with lower runtimes than REMC. However, the performance of the simpler algorithms is slightly worse than REMC under lower sampling intensities and some heuristics clearly struggle with minimum distance measures. In comparison the new advanced Mixed Replica search algorithm (MixRep), which uses heterogeneous replicas, was able to sample core sets with equal or higher diversity scores than REMC and the simpler heuristics, often using less computation time than REMC. CONCLUSION: The REMC search algorithm used in the original Core Hunter computer program performs well, sometimes leading to slightly better results than some of the simpler methods, although it doesnā€™t always give the best results. By switching to the new Mixed Replica algorithm overall results and runtimes can be significantly improved. Finally we recommend including minimum distance measures in the objective function when looking for core sets in which all accessions are sufficiently distant from each other. Core Hunter II is freely available as an open source project at http://www.corehunter.org

    Endothelin ETA receptors predominate in chronic thromboembolic pulmonary hypertension.

    Get PDF
    AIMS: Endothelin-1 levels are raised in chronic thromboembolic pulmonary hypertension. Our aim in this study was to identify the presence of endothelin receptors in patients with CTEPH by analysing tissue removed at pulmonary endarterectomy. MAIN METHODS: Pulmonary endarterectomy tissue cross-sections were analysed using autoradiography with [(125)I]-ET-1 using ligands selective for ETA or ETB to determine sub-type distribution. The precise cellular localisation of ETA and ETB receptors was determined using selective antisera to both sub-types and compared with haematoxylin and eosin, Elastic Van Gieson and smooth muscle actin labelled sections. KEY FINDINGS: Two patterns of ET-1 binding were found. In sections with frequent recanalised channels, ET-1 bound to the smooth muscle cells surrounding the channels. In sections where there was less organised thrombus with no obvious re-canalisation, minimal ET-1 binding was observed. Some contractile type smooth muscle cells not associated with recanalised channels and diffusely spread throughout the PEA material were associated with ET receptor antibody binding on immunohistochemistry. There was a greater expression of the ETA receptor type in the specimens. SIGNIFICANCE: The presence of ET-1 receptors in the chronic thrombus in proximal CTEPH suggests ET-1 could act not only on the distal vasculopathy in the unobstructed vessels but may also stimulate smooth muscle cell proliferation within chronic clot. The abundance of ET receptors within the tissue provides evidence that the ET pathway is involved in the pathology of chronic thrombus reorganisation leading to CTEPH providing a rationale for the repurposing of ET receptor antagonists in the treatment of this condition.We acknowledge the support of the referring UK centres for PH; the Pulmonary Hypertension Association-UK, Wellcome Trust award WT107715/Z/15/Z, Programmes in Translational Medicines and Therapeutics (085686) and in Metabolic and Cardiovascular Disease (096822/Z/11/Z), the British Heart Foundation PG/09/050/27734, MRC and the NIHR Cambridge Biomedical Research Centre. We also acknowledge the support of the Cambridge NIHR BRC Cell Phenotyping Hub and the Papworth Hospital Research Tissue Bank.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.lfs.2016.02.03

    Development of GCP Ontology for Sharing Crop Information

    Get PDF
    The Generation Challenge Programme (GCP – "http://www.generationcp.org":http://www.generationcp.org) is a globally distributed crop research consortium directed toward crop improvement through the application of comparative biology and genetic resources characterization to plant breeding. GCP adopted the development paradigm of a ‘model-driven architecture’ to achieve the interoperability and integration of diverse GCP data types that are available through distributed data sources and consumed by end-user data analysis tools. Its objective is to ensure semantic compatibility across the Consortium that will lead to the creation of robust global public goods from GCP research results. 

The GCP scientific domain model is an object model that encapsulates key crop science concepts and is documented using Unified Modeling Language (see GCP Models on "http://pantheon.generationcp.org/index.php":http://pantheon.generationcp.org/index.php). 

At the core of the GCP architecture is a scientific domain model, which is heavily parameterized with GCP-indexed ontology terms. The GCP-indexed ontology reuses established international standards where available, converts other publicly available controlled vocabularies into formally managed ontology, and develops novel ontology if no public vocabularies yet exist. General and crop-specific GCP ontologies are being developed by crop teams involving GCP and external scientific experts – in particular, for crop-specific ontology relating to plant anatomy, developmental stage, trait and phenotype for selected GCP crops. Crop ontologies are being developed for chickpea, maize, Musa, potato, rice, sorghum and wheat. The Bioversity crop descriptor lists already loaded into OBO format files provide the primary structure to develop the crop ontologies. Then, terms to be mapped to the ontologies are extracted from the crop databases where trait values have been stored by crop scientists. These sources allow the ontology teams to identify the most commonly used concept names and their interrelations. Experts validate the selection of keywords that will build the controlled vocabulary. 

These GCP ontologies will allow researchers and end users to query keywords related to traits, plant structure, growth stage, and molecular function, and link them to associated phenotyping and genotyping data sets including data on germplasm, crop physiology, geographic information, genes, QTL, etc. To reach that stage, the crop ontologies will be integrated into the data-entry user interface or data templates as picklists facilitating data annotation and submission of new terms. In addition, the GCP ontologies will be integrated with Plant Ontology (PO) and Gramene (Trait Ontology, TO; Environment Ontology, EO) to develop a common, internationally shared crop trait and anatomy ontology. The team will initiate collaboration with SONet (Scientific Observations Network) and OBOE (Extensible Observation Ontology), which proposed to integrate the GCP ontology as a study case.
The Open Biomedical Ontologies (OBO) edit tool has been used to develop the ontologies for rice, wheat and maize traits, which are currently available at "http://cropforge.org/projects/gcpontology/":http://cropforge.org/projects/gcpontology/ . The crop-specific work plans and ontologies related to other materials are published at "http://pantheon.generationcp.org":http://pantheon.generationcp.org. 
The development and curation of general-purpose ontologies will be continued and made available on the Pantheon and CropForge websites
    • ā€¦
    corecore