3 research outputs found

    Algebraic Correlation Function and Anomalous Diffusion in the HMF model

    Get PDF
    In the quasi-stationary states of the Hamiltonian Mean-Field model, we numerically compute correlation functions of momenta and diffusion of angles with homogeneous initial conditions. This is an example, in a N-body Hamiltonian system, of anomalous transport properties characterized by non exponential relaxations and long-range temporal correlations. Kinetic theory predicts a striking transition between weak anomalous diffusion and strong anomalous diffusion. The numerical results are in excellent agreement with the quantitative predictions of the anomalous transport exponents. Noteworthy, also at statistical equilibrium, the system exhibits long-range temporal correlations: the correlation function is inversely proportional to time with a logarithmic correction instead of the usually expected exponential decay, leading to weak anomalous transport properties

    Dynamics and thermodynamics of systems with long-range interactions

    No full text
    Properties of systems with long range interactions are still poorly understood despite being of importance in most areas of physics. The present volume introduces and reviews the effort of constructing a coherent thermodynamic treatment of such systems by combining tools from statistical mechanics with concepts and methods from dynamical systems. Analogies and differences between various systems are examined by considering a large range of applications, with emphasis on Bose--Einstein condensates. Written as a set of tutorial reviews, the book will be useful for both the experienced researcher as well as the nonexpert scientist or postgraduate student
    corecore