35 research outputs found

    Analyse de l'efficacité de la régulation par les microARN

    Get PDF
    Les microARN constituent une classe de petits ARN non codants d une vingtaine de nuclĂ©otides, issus de transcrits cellulaires, qui inhibent l expression de gĂšnes cibles au niveau post-transcriptionnel. Chez les mammifĂšres, bien qu ils puissent agir sur une cible parfaitement complĂ©mentaire (mode parfait), les microARN ont presqu exclusivement des cibles partiellement complĂ©mentaires (mode imparfait). Puisqu en mode imparfait une coupure endonuclĂ©olytique de la cible est impossible, il est gĂ©nĂ©ralement proposĂ© que le mode imparfait soit moins efficace que le mode parfait : conduisant Ă  un silencing moins efficace, nĂ©cessitant plus de complexes effecteurs (miRISC) et facilement saturable par une augmentation du nombre de cible. Dans ce travail j ai dĂ©veloppĂ© une approche expĂ©rimentale reposant sur l expression de protĂ©ines fluorescentes pour mesurer prĂ©cisĂ©ment le silencing au niveau de chaque cellule. J ai fait trois observations inattendues sur l efficacitĂ© de la rĂ©gulation par les microARN : i) le silencing en mode parfait et imparfait nĂ©cessite des quantitĂ©s similaires de petit ARN, ii) une augmentation, mĂȘme trĂšs importante, de l expression du gĂšne cible ne lui permet pas d Ă©chapper Ă  la rĂ©gulation, iii) le silencing n est pas intrinsĂšquement plus faible en mode imparfait (qu en mode parfait) mais n est pas actif dans toutes les cellules. Si les deux premiers points sont facilement explicables dans le cadre de l induction de la dĂ©gradation de l ARNm cible sur un mode catalytique via la dĂ©adĂ©nylation de l ARNm, le troisiĂšme indique l existence d une rĂ©gulation forte du silencing qui est spĂ©cifique du mode imparfait. De plus, comme dans les deux modes le silencing dĂ©pend principalement du mĂȘme partenaire, Ago2, cette rĂ©gulation intervient aprĂšs l assemblage du complexe minimal (Ago2/petit ARN). Ainsi, les diffĂ©rences entre les modes parfait et imparfait ne se situent pas au niveau proposĂ© puisque lorsque la cellule est compĂ©tente, leurs efficacitĂ©s sont comparables. Par contre, mes travaux mettent en Ă©vidence l existence d un contrĂŽle de la rĂ©gulation en mode imparfait dont la nature reste Ă  prĂ©ciser.MicroRNAs are endogenous small non-coding RNAs about 21 nucleotides in length that inhibit the expression of target genes primarily at the post-transcriptional level. The target recognition of microARN is sequence-specific and requires a partial complementarity between the microRNA and target sequences that are present on the mRNA molecules. microRNAs are part of an effector complex, miRISC, containing multiple proteins which can participate to a repression of translation and/or promotes destabilization of the target mRNA. The mechanism of microRNA silencing is not completely understood to date, but it is assumed that it is globally less potent than that of siRNA acting on perfect targets. By using fluorescent proteins expressing reporter plasmids and flow cytometry, we observed an efficient silencing by microRNA which does not require more active complexes than the perfect target silencing and cannot be easily saturated. This suggests that in cells in culture, microRNA silencing works in a catalytic manner leading to mRNA degradation. In addition, our data also indicates that the efficiency of microRNA silencing is variable among cells and can be almost completely abrogated under some conditions contrary to the siRNA silencing which is active in all cells. As we observed that the protein Ago2 is the only member of Ago family that is implicated in the microRNA silencing, it follows that the regulation of microRNA silencing acts after the formation of the core complex (Ago2/small RNA). So the difference between the silencing in the perfect and imperfect mode are not what is usually proposed, but pertain to a level of cellular control, which remains to be deciphered.PARIS11-SCD-Bib. Ă©lectronique (914719901) / SudocSudocFranceF

    Induction de l'expression génique par des petits ARN dans des cellules de mammifÚre

    Get PDF
    Chez la plupart des eucaryotes, la prĂ©sence d ARN double brin induit la mise en place de mĂ©canismes qui peuvent inhiber l expression de gĂšnes sur la base d une complĂ©mentaritĂ© de sĂ©quence. L exemple le mieux connu est le cas de l interfĂ©rence par l ARN telle qu elle a Ă©tĂ© dĂ©crite initialement chez C. elegans, oĂč les ARN double brin gĂ©nĂšrent une endonuclĂ©ase spĂ©cifique de sĂ©quence qui dĂ©grade tout ARN parfaitement complĂ©mentaire du petit ARN guide contenu dans le complexe RISC. En plus de cette activitĂ© post-transcriptionnelle, il a Ă©tĂ© observĂ© chez de nombreux eucaryotes l existence de mĂ©canismes apparentĂ©s Ă  l interfĂ©rence par l ARN et qui inhibent la transcription en agissant au niveau de la chromatine. Si ces mĂ©canismes ont Ă©tĂ© clairement mis en Ă©vidence chez les plantes et les champignons il n existe que quelques exemples de ce type de rĂ©gulation chez les mammifĂšres. De maniĂšre inattendue, le fait de cibler le promoteur d un gĂšne avec de petits ARN double brin peut conduire Ă  une augmentation de son expression. Cette rĂ©ponse paradoxale n a Ă©tĂ© observĂ©e jusqu Ă  prĂ©sent que dans des cellules de mammifĂšre, et si elle suscite un intĂ©rĂȘt en particulier pour stimuler l expression de gĂšnes suppresseurs de tumeurs, son mĂ©canisme est encore inconnu.Mes travaux ont portĂ© sur l Ă©tude de l induction de l expression par des petits ARN. Ils reposent tout d abord sur le dĂ©veloppement d une approche expĂ©rimentale qui permet de suivre l activitĂ© du promoteur du gĂšne ciblĂ©. Pour cela, j ai utilisĂ© des constructions indicatrices organisĂ©es autour d un promoteur bidirectionnel qui contrĂŽle l expression de deux protĂ©ines fluorescentes. Lorsque l on cible le messager de l une de ces protĂ©ines, l expression de l autre est augmentĂ©e et j ai pu montrer que ceci corrĂšle avec la quantitĂ© d ARN messager et de polymĂ©rase II prĂ©sente sur le promoteur bidirectionnel. Ainsi, l utilisation d un promoteur bidirectionnel permet effectivement de suivre le niveau de transcription du gĂšne ciblĂ© par le petit ARN.Cette induction de l expression dĂ©tectĂ©e de maniĂšre controlatĂ©rale n est pas due Ă  un effet hors cible des petits ARN car elle nĂ©cessite la prĂ©sence de la sĂ©quence cible sur l un des transcrits de la construction indicatrice. L induction peut ĂȘtre observĂ©e avec de nombreux petits ARN diffĂ©rents, y compris s ils interagissent comme des micro ARN. Les constructions indicatrices que j ai dĂ©veloppĂ©es sont donc biaisĂ©es en faveur d une rĂ©ponse de type induction transcriptionnelle enrĂ©ponse Ă  un silencing. L utilisation d un promoteur bidirectionnel est probablement Ă  l origine de ce biais Ă  travers la possibilitĂ© d induire une transcription convergente sur les plasmides lorsqu ils sont circulaires. De fait, la linĂ©arisation de la construction indicatrice supprime l induction, du moins pour les constructions les plus simples.Si le coeur du complexe RISC, la protĂ©ine Ago2, est nĂ©cessaire au silencing et Ă  l induction, j ai pu montrer que dans le deuxiĂšme cas c Ă©tait en fait pour guider le complexe RISC sur les transcrits et non pas pour les couper. En effet, le silencing des protĂ©ines TNRC6A et B diminue fortement l induction sans toucher au silencing s il procĂšde en mode siRNA. De plus l ancrage sur le transcrit EGFP induit une rĂ©ponse de mĂȘme type que le petit ARN (silencing et induction). Cette approche d ancrage m a permis d identifier les domaines nĂ©cessaires au silencing et Ă  l induction et de montrer qu ils sont distincts.Ce travail permet donc de mettre en Ă©vidence que l induction transcriptionnelle observĂ©e sur nos constructions indicatrices est due Ă  une activitĂ© des partenaires des protĂ©ines Argonaute, la famille GW182/TNRC6. Cette observation ouvre la voie Ă  une caractĂ©risation du mĂ©canisme de cette induction en montrant qu elle relĂšve d une activitĂ© spĂ©cifique du complexe RISC.In the majority of the eucaryote, the presence of double-strands RNA induce the inhibition of gene expression base on the complementary of sequence. The best known example is the case of RNA interference in C. elegans which is the first model described, in which the double-strands RNA generate an specific endonuclease who degrade all RNA complementary perfectly to the small RNA guide included in the complex RISC. In addition to this post-transcriptional activity, it has been observed in many eukaryotes the existence of mechanisms related to RNA interference and it inhibit transcription by acting at the chromatin. If these mechanisms have been clearly demonstrated in plants, fungi, there are only several examples of this type of regulation in mammals. Unexpectedly, the targeting the promoter of a gene with small double-stranded RNA can lead to increased expression. This paradoxical response has not been observed so far in mammalian cells, but it raises interest particularly to stimulate the expression of tumor suppressor genes, unfortunely the mechanism is still unknown.My work has focused on studying the induction of expression by small RNAs. They are based first on the development of an experimental approach that allows to monitor the promoter activity of the targeted gene. To do this I used indicator constructions organized around a bidirectional promoter that controls the expression of two fluorescent proteins. When targeting the messenger of one of these proteins, the expression of the other is increased and I was able to show that thisincrease correlates with the amount of RNA messenger polymerase II presented on the bidirectional promoter. Thus, the use of a bidirectional promoter can effectively monitor the level of transcription of the gene targeted by the small RNA. This induction of expression detected in a "contralateral" is not due to an off-target effect of siRNA because it requires the presence of the target sequence on one of the transcripts of the construction indicator. The induction can be observed with many different small RNAs, including the interact as micro RNA. Thus the construction indicator that I developed are biased in an induction response transcriptionally in response to a silencing. The use of a bidirectional promoter is probably the origin of this bias through the possibility of inducing a convergent transcription when the plasmids are circular. In fact, the linearization of the construction indicator removes the induction, at least for the simplest constructions. If the heart of the complex RISC is the protein Ago2, is necessary for the silencing and the induction, I was able to show that in the second case Ago2 was in fact to guide the RISC complex on the transcripts but not to cut it. Indeed, the silencing of proteins TNRC6A and B reduces induction significantly without affecting the silencing if it processe in the siRNA model. Also anchoring the transcript EGFP induces a response similar to the small RNA (silencing and induction). This anchor approach allowed me to identify domaines necessary for silencing and induction and show that they are distinct. This work makes it possible to demonstrate that the transcriptional induction observed in our constructions indicator is due to a activity partner ofArgonaute proteins, the GW182/TNRC6 family. This observation open the way for characterization of the mechanism of this induction by showing that it belongs to a specific activity of the RISC complex.PARIS11-SCD-Bib. Ă©lectronique (914719901) / SudocSudocFranceF

    High frequency trans-splicing in a cell line producing spliced and polyadenylated RNA polymerase I transcripts from an rDNA-myc chimeric gene

    Get PDF
    The 2G1MycP2Tu1 cell line was obtained following transfection of human colon carcinoma cells from the SW613-S cell line with a plasmid carrying a genomic copy of the human MYC gene. 2G1MycP2Tu1 cells produce MYC mRNAs and proteins of abnormal size. In order to analyze the structure of these abnormal products, a cDNA library constructed using RNA isolated from these cells was screened with a MYC probe. Fifty clones were studied by DNA sequencing. The results indicated that a truncated copy of the MYC gene had integrated into an rDNA transcription unit in 2G1MycP2Tu1 cells. This was confirmed by northern blot analysis, PCR amplification on genomic DNA and fluorescent in situ hybridization (FISH) experiments on metaphase chromosomes. 2G1MycP2Tu1 cells produce hybrid rRNA-MYC RNA molecules that are polyadenylated and processed by splicing reactions involving natural and cryptic splice sites. These transcripts are synthesized by RNA polymerase I, as confirmed by actinomycin D sensitivity experiments, suggesting that 3â€Č end processing and splicing are uncoupled from transcription in this case. 2G1MycP2Tu1 cells also produce another type of chimeric mRNAs consisting of correctly spliced exons 2 and 3 of the MYC gene fused to one or more extraneous 5â€Č exons by proper splicing to the acceptor sites of MYC exon 2. These foreign exons belong to 33 different genes, which are located on 14 different chromosomes. These observations and the results of FISH and Southern blotting experiments lead us to conclude that trans-splicing events occur at high frequency in 2G1MycP2Tu1 cells

    mRNP3 and mRNP4 are phosphorylatable by casein kinase II in Xenopus oocytes, but phosphorylation does not modify RNA-binding affinity

    Get PDF
    AbstractmRNP3 and mRNP4 (also called FRGY2) are two mRNA-binding proteins which are major constituents of the maternal RNA storage particles of Xenopus laevis oocytes. The phosphorylation of mRNP3–4 has been implicated in the regulation of mRNA masking. In this study, we have investigated their phosphorylation by casein kinase II and its consequence on their affinity for RNA. Comparison of the phosphopeptide map of mRNP3–4 phosphorylated in vivo with that obtained after phosphorylation in vitro by purified Xenopus laevis casein kinase II strongly suggests that casein kinase II is responsible for the in vivo phosphorylation of mRNP3–4 in oocytes. The phosphorylation occurs on a serine residue in a central domain of the proteins. The affinity of mRNP3–4 for RNA substrates remained unchanged after the treatment with casein kinase II or calf intestine phosphatase in vitro. This suggests that phosphorylation of these proteins does not regulate their interaction with RNA but rather controls their interactions with other proteins

    Introduction : Les régulations par les petits ARN

    No full text
    L'ARN a pendant longtemps Ă©tĂ© cantonnĂ© Ă  un rĂŽle d'intermĂ©diaire passif entre l'ADN porteur de l'information gĂ©nĂ©tique et les protĂ©ines qui, dans la plupart des cas, mettent en Ɠuvre cette information. Pourtant les molĂ©cules d'ADN et d'ARN peuvent s'hybrider ce qui ouvre la possibilitĂ© de nombreuses interactions entre les gĂšnes et leurs transcrits et, en particulier, de rĂ©trocontrĂŽles. Au cours des dix derniĂšres annĂ©es un ensemble de travaux a mis en Ă©vidence que de telles rĂ©gulations existaient effectivement chez les eucaryotes mĂȘme si le schĂ©ma n'est pas exactement celui que l'on aurait pu prĂ©dire. Des ARN jouent ainsi un rĂŽle essentiel dans la rĂ©gulation de la traduction et de la dĂ©gradation des ARN messagers dans le cadre de l'interfĂ©rence par l'ARN et des phĂ©nomĂšnes apparentĂ©s. Deux Ă©lĂ©ments distinguent ces ARN rĂ©gulateurs : leur taille (une vingtaine de nuclĂ©otides) et le fait qu'Ă  un moment de leur genĂšse ils ont Ă©tĂ© des ARN double brin. Le champ des activitĂ©s biologiques de ces petits ARN est toutefois beaucoup plus vaste que celui des ARN messagers et s'Ă©tend aussi Ă  l'organisation du gĂ©nome Ă  travers le contrĂŽle de la compaction de la chromatine, les rĂ©arrangements de gĂšnes ou l'organisation spatiale du noyau. Ainsi des petits ARN interviennent-ils sur tous les niveaux de l'expression gĂ©nique et sont-ils au centre des rĂ©gulations cellulaires chez les eucaryotes

    Introduction : Les régulations par les petits ARN

    No full text

    Regulation of pim and myb mRNA accumulation by interleukin 2 and interleukin 3 in murine hematopoietic cell lines.

    No full text
    International audienceWe have studied the mRNA accumulation of pim and myb genes in two interleukin 2- (IL2-)dependent, CTLL-2 and B6.1, and one IL3-dependent, FDC-P2, murine hematopoietic cell lines. To be able to dissociate the IL2 response from the phenomenon of lymphocyte activation, we used cell lines constitutively expressing the high affinity IL2 receptor. Deprivation of IL2 for 16 h led to an accumulation of CTLL-2 cells in G0/G1, and stimulation with IL2 induced a progression in S phase after 10 h. An increased accumulation of pim mRNA was observed in all cases in response to IL2 or IL3. This regulation did not require de novo protein synthesis and was, in CTLL-2 cells, mostly at the transcriptional level. Expression of myb was more complex: in CTLL-2 and FDC-P2 it is high and constitutive, while in B6.1 it is low and induced by IL2. This difference in myb regulation correlates with the higher level of myb expression in immature cells, as only B6.1 is functionally mature. Furthermore, it shows that transcription of myb does not affect the control of the cell cycle by the growth factors IL2 and IL3. These studies demonstrate that pim belongs to the small group of protooncogenes that can be induced during the primary response to growth factors (fos, myc, and myb) and that constitutive expression of myb, at least at the RNA level, is not sufficient to abrogate the growth factor requirement of hematopoietic cell lines

    Analyse cinétique de l'interférence par l'ARN dans les compartiments nucléaire et cytoplasmique des cellules de mammifÚres

    No full text
    LE KREMLIN-B.- PARIS 11-BU MĂ©d (940432101) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF
    corecore