119 research outputs found
The Prospects for Mechanical Ratcheting of Bulk Metallic Glasses
The major mechanical shortcoming of metallic glasses is their limited ductility at room temperature. Monolithic metallic glasses sustain only a few percent plastic strain when subjected to uniaxial compression and essentially no plastic strain under tension. Here we describe a room temperature deformation process that may have the potential to overcome the limited ductility of monolithic metallic glasses and achieve large plastic strains. By subjecting a metallic glass sample to cyclic torsion, the glass is brought to the yield surface; the superposition of a small uniaxial stress (much smaller than the yield stress) should then produce increments in plastic strain along the tensile axis. This accumulation of strain during cyclic loading, commonly known as ratcheting, has been extensively investigated in stainless and carbon steel alloys, but has not been previously studied in metallic glasses. We have successfully demonstrated the application of this ratcheting technique of cyclic torsion with superimposed tension for polycrystalline Ti-6Al-4V. Our stability analyses indicate that the plastic deformation of materials exhibiting elastic--perfectly plastic constitutive behavior such as metallic glasses should be stable under cyclic torsion, however, results obtained thus far are inconclusive
Fatigue of Yttria-Stabilized Zirconia: II, Crack Propagation, Fatigue Striations, and Short-Crack Behavior
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65604/1/j.1151-2916.1991.tb04089.x.pd
Size Effect in Fracture: Roughening of Crack Surfaces and Asymptotic Analysis
Recently the scaling laws describing the roughness development of fracture
surfaces was proposed to be related to the macroscopic elastic energy released
during crack propagation [Mor00]. On this basis, an energy-based asymptotic
analysis allows to extend the link to the nominal strength of structures. We
show that a Family-Vicsek scaling leads to the classical size effect of linear
elastic fracture mechanics. On the contrary, in the case of an anomalous
scaling, there is a smooth transition from the case of no size effect, for
small structure sizes, to a power law size effect which appears weaker than the
linear elastic fracture mechanics one, in the case of large sizes. This
prediction is confirmed by fracture experiments on wood.Comment: 9 pages, 6 figures, accepted for publication in Physical Review
Conformal Mapping on Rough Boundaries I: Applications to harmonic problems
The aim of this study is to analyze the properties of harmonic fields in the
vicinity of rough boundaries where either a constant potential or a zero flux
is imposed, while a constant field is prescribed at an infinite distance from
this boundary. We introduce a conformal mapping technique that is tailored to
this problem in two dimensions. An efficient algorithm is introduced to compute
the conformal map for arbitrarily chosen boundaries. Harmonic fields can then
simply be read from the conformal map. We discuss applications to "equivalent"
smooth interfaces. We study the correlations between the topography and the
field at the surface. Finally we apply the conformal map to the computation of
inhomogeneous harmonic fields such as the derivation of Green function for
localized flux on the surface of a rough boundary
Recommended from our members
The Prospects for Mechanical Ratcheting of Bulk Metallic Glasses
The major mechanical shortcoming of metallic glasses is their limited ductility at room temperature. Monolithic metallic glasses sustain only a few percent plastic strain when subjected to uniaxial compression and essentially no plastic strain under tension. Here we describe a room temperature deformation process that may have the potential to overcome the limited ductility of monolithic metallic glasses and achieve large plastic strains. By subjecting a metallic glass sample to cyclic torsion, the glass is brought to the yield surface; the superposition of a small uniaxial stress (much smaller than the yield stress) should then produce increments in plastic strain along the tensile axis. This accumulation of strain during cyclic loading, commonly known as ratcheting, has been extensively investigated in stainless and carbon steel alloys, but has not been previously studied in metallic glasses. We have successfully demonstrated the application of this ratcheting technique of cyclic torsion with superimposed tension for polycrystalline Ti-6Al-4V. Our stability analyses indicate that the plastic deformation of materials exhibiting elastic--perfectly plastic constitutive behavior such as metallic glasses should be stable under cyclic torsion, however, results obtained thus far are inconclusive
- …