11 research outputs found

    Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2\u27-deoxycytidine.

    No full text
    Tumor-recruited CD11b myeloid cells, including myeloid-derived suppressor cells, play a significant role in tumor progression, as these cells are involved in tumor-induced immune suppression and tumor neovasculogenesis. On the other hand, the tumor-infiltrated CD11b myeloid cells could potentially be a source of immunostimulatory antigen-presenting cells (APCs), since most of these cells represent common precursors of both dendritic cells and macrophages. Here, we investigated the possibility of generating mature APCs from tumor-infiltrated CD11b myeloid cells. We demonstrate that in vitro exposure of freshly excised mouse tumors to DNA methyltransferase inhibitor 5-aza-2\u27-deoxycytidine (decitabine, AZA) results in selective elimination of tumor cells, but, surprisingly it also enriches CD45(+) tumor-infiltrated cells. The majority of post-AZA surviving CD45(+) tumor-infiltrated cells were represented by CD11b myeloid cells. A culture of isolated tumor-infiltrated CD11b cells in the presence of AZA and GM-CSF promoted their differentiation into mature F4/80/CD11c/MHC class II-positive APCs. These tumor-derived myeloid APCs produced substantially reduced amounts of immunosuppressive (IL-13, IL-10, PGE(2)), pro-angiogenic (VEGF, MMP-9) and pro-inflammatory (IL-1beta, IL-6, MIP-2) mediators than their precursors, freshly isolated tumor-infiltrated CD11b cells. Vaccinating naïve mice with ex vivo generated tumor-derived APCs resulted in the protection of 70% mice from tumor outgrowth. Importantly, no loading of tumor-derived APC with exogenous antigen was needed to stimulate T cell response and induce the anti-tumor effect. Collectively, our results for the first time demonstrate that tumor-infiltrated CD11b myeloid cells can be enriched and differentiated in the presence of DNA demethylating agent 5-aza-2\u27-deoxycytidine into mature tumor-derived APCs, which could be used for cancer immunotherapy

    Pivotal Advance: Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGEâ‚‚ catabolism in myeloid cells.

    No full text
    Recent studies suggest that tumor-infiltrated myeloid cells frequently up-regulate COX-2 expression and have enhanced PGEâ‚‚ metabolism. This may affect the maturation and immune function of tumor-infiltrated antigen-presenting cells. In vitro studies demonstrate that tumor-derived factors can skew GM-CSF-driven differentiation of T(h)1-oriented myeloid APCs into M2-oriented Ly6C(+)F4/80(+) MDSCs or Ly6C(-)F4/80(+) arginase-expressing macrophages. These changes enable myeloid cells to produce substantial amounts of IL-10, VEGF, and MIP-2. The tumor-mediated inhibition of APC differentiation was associated with the up-regulated expression of PGEâ‚‚-forming enzymes COX-2, mPGES1 in myeloid cells, and the simultaneous repression of PGE(2)-catabolizing enzyme 15-PGDH. The presence of tumor-derived factors also led to a reduced expression of PGT but promoted the up-regulation of MRP4, which works as a PGEâ‚‚ efflux receptor. Addition of COX-2 inhibitor to the BM cell cultures could prevent the tumor-induced skewing of myeloid cell differentiation, partially restoring cell phenotype and down-regulating the arginase expression in the myeloid APCs. Our study suggests that tumors impair the intracellular PGE(2) catabolism in myeloid cells through simultaneous stimulation of PGE(2)-forming enzymes and inhibition of PGEâ‚‚-degrading systems. This tumor-induced dichotomy drives the development of M2-oriented, arginase-expressing macrophages or the MDSC, which can be seen frequently among tumor-infiltrated myeloid cells

    Aberrant PGEâ‚‚ metabolism in bladder tumor microenvironment promotes immunosuppressive phenotype of tumor-infiltrating myeloid cells.

    No full text
    Bladder cancer is associated with enhanced inflammation and characterized by deregulated prostanoid metabolism. Here we examined prostaglandin Eâ‚‚ (PGEâ‚‚) metabolism and myeloid cell subsets that infiltrate tumor tissue using two xenograft models of human bladder cancer. Human bladder tumor xenografts implanted into athymic nude mice become highly infiltrated with host CD11b myeloid cells of bone marrow origin. Fast growing SW780 bladder tumor xenografts were infiltrated with heterogeneous CD11b myeloid cell subsets including tumor-associated macrophages and myeloid-derived suppressor cells. In contrast, majority of myeloid cells in tumor tissue from slow growing bladder cancer Urothel 11 displayed more immature, homogenous phenotype and comprised mostly MHC II class-negative myeloid-derived suppressor cells. We demonstrate that human bladder tumors secrete substantial amounts of PGEâ‚‚. Normal bone marrow myeloid cell progenitors cultured in the presence of a bladder tumor-conditioned medium, which is enriched for PGEâ‚‚, failed to differentiate into mature APCs and acquired phenotype of the myeloid-derived suppressor cells or inflammatory macrophages with up-regulated chemokine receptor CXCR4. Collectively our data demonstrate that enhanced cancer-related inflammation and deregulated PGEâ‚‚ metabolism in tumor microenvironment promote immunosuppressive pro-tumoral phenotype of myeloid cells in bladder cancer. These data also suggest that not only local tumor microenvironment but other factors such as stage of cancer disease and pace of tumor growth could markedly influence the phenotype, differentiation and immune function of myeloid cells in tumor tissue

    Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer.

    No full text
    Many cancers are known to produce high amounts of PGE(2), which is involved in both tumor progression and tumor-induced immune dysfunction. The key enzyme responsible for the biological inactivation of PGE(2) in tissue is NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). It is well established that cancer cells frequently show down-regulated expression of 15-PGDH, which plays a major role in catabolism of the PGE(2). Here we demonstrate that tumor-infiltrated CD11b cells are also deficient for the 15-PGDH gene. Targeted adenovirus-mediated delivery of 15-PGDH gene resulted in substantial inhibition of tumor growth in mice with implanted CT-26 colon carcinomas. PGDH-mediated antitumor effect was associated with attenuated tumor-induced immune suppression and substantially reduced secretion of immunosuppressive mediators and cytokines such as PGE(2), IL-10, IL-13, and IL-6 by intratumoral CD11b cells. We show also that introduction of 15-PGDH gene in tumor tissue is sufficient to redirect the differentiation of intratumoral CD11b cells from immunosuppressive M2-oriented F4/80(+) tumor-associated macrophages (TAM) into M1-oriented CD11c(+) MHC class II-positive myeloid APCs. Notably, the administration of the 15-PGDH gene alone demonstrated a significant therapeutic effect promoting tumor eradication and long-term survival in 70% of mice with preestablished tumors. Surviving mice acquired antitumor T cell-mediated immune response. This study for the first time demonstrates an important role of the 15-PGDH in regulation of local antitumor immune response and highlights the potential to be implemented to enhance the efficacy of cancer therapy and immunotherapy

    Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer.

    No full text
    Both cancer-related inflammation and tumor-induced immune suppression are associated with expansion of myeloid cell subsets including myeloid-derived suppressor cells. However, little known regarding characteristics of myeloid cells in patients with bladder cancer. In this study, we analyzed myeloid cells from peripheral blood (PBMC) and tumor tissue that were collected from patients with superficial noninvasive and invasive urothelial carcinomas. Our results demonstrate that PBMC from bladder cancer patients contain two major CD11b myeloid cell subsets: granulocyte-type CD15(high) CD33(low) cells and monocyte-type CD15(low) CD33(high) cells. The number of circulating granulocytic but not monocytic myeloid cells in cancer patients was markedly increased when compared to healthy individuals. Both myeloid cell subsets from cancer patients were highly activated and produced substantial amounts of proinflammatory chemokines/cytokines including CCL2, CCL3, CCL4, G-CSF, IL-8 and IL-6. Granulocytic myeloid cells were able to inhibit in vitro T cell proliferation through induction of CD4(+) Foxp3(+) T regulatory cells. Analysis of bladder cancer tissues revealed that tumors were infiltrated with monocyte-macrophage CD11b(+) HLA-DR(+) and granulocytic CD11b(+) CD15(+) HLA-DR(-) myeloid cells. Collectively, this study identifies myeloid cell subsets in patients with bladder cancer. We demonstrate that these highly activated inflammatory myeloid cells represent a source of multiple chemokines/cytokines and may contribute to inflammation and immune dysfunction in bladder cancer

    Expansion of CCR8(+) inflammatory myeloid cells in cancer patients with urothelial and renal carcinomas.

    No full text
    PURPOSE: Chemokines are involved in cancer-related inflammation and malignant progression. In this study, we evaluated expression of CCR8 and its natural cognate ligand CCL1 in patients with urothelial carcinomas of bladder and renal cell carcinomas. EXPERIMENTAL DESIGN: We examined CCR8 expression in peripheral blood and tumor tissues from patients with bladder and renal carcinomas. CCR8-positive myeloid cells were isolated from cancer tissues with magnetic beads and tested in vitro for cytokine production and ability to modulate T-cell function. RESULTS: We show that monocytic and granulocytic myeloid cell subsets in peripheral blood of patients with cancer with urothelial and renal carcinomas display increased expression of chemokine receptor CCR8. Upregulated expression of CCR8 is also detected within human cancer tissues and primarily limited to tumor-associated macrophages. When isolated, CD11b(+)CCR8(+) cell subset produces the highest levels of proinflammatory and proangiogenic factors among intratumoral CD11b myeloid cells. Tumor-infiltrating CD11b(+)CCR8(+) cells selectively display activated Stat3 and are capable of inducing FoxP3 expression in autologous T lymphocytes. Primary human tumors produce substantial amounts of the natural CCR8 ligand CCL1. CONCLUSIONS: This study provides the first evidence that CCR8(+) myeloid cell subset is expanded in patients with cancer. Elevated secretion of CCL1 by tumors and increased presence of CCR8(+) myeloid cells in peripheral blood and cancer tissues indicate that CCL1/CCR8 axis is a component of cancer-related inflammation and may contribute to immune evasion. Obtained results also implicate that blockade of CCR8 signals may provide an attractive strategy for therapeutic intervention in human urothelial and renal cancers

    Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway.

    No full text
    Renal cell carcinoma (RCC), the most common human kidney cancer, is frequently infiltrated with tumor-associated macrophages (TAM) that can promote malignant progression. Here, we show that TAMs isolated from human RCC produce substantial amounts of the proinflammatory chemokine CCL2 and immunosuppressive cytokine IL-10, in addition to enhanced eicosanoid production via an activated 15-lipoxygenase-2 (15-LOX2) pathway. TAMs isolated from RCC tumors had a high 15-LOX2 expression and secreted substantial amounts of 15(S)-hydroxyeicosatetraenoic acid, its major bioactive lipid product. Inhibition of lipoxygenase activity significantly reduced production of CCL2 and IL-10 by RCC TAMs. In addition, TAMs isolated from RCC were capable of inducing in T lymphocytes, the pivotal T regulatory cell transcription factor forkhead box P3 (FOXP3), and the inhibitory cytotoxic T-lymphocyte antigen 4 (CTLA-4) coreceptor. However, this TAM-mediated induction of FOXP3 and CTLA-4 in T cells was independent of lipoxygenase and could not be reversed by inhibiting lipoxygenase activity. Collectively, our results show that TAMs, often present in RCCs, display enhanced 15-LOX2 activity that contributes to RCC-related inflammation, immunosuppression, and malignant progression. Furthermore, we show that TAMs mediate the development of immune tolerance through both 15-LOX2-dependent and 15-LOX2-independent pathways. We propose that manipulating LOX-dependent arachidonic acid metabolism in the tumor microenvironment could offer new strategies to block cancer-related inflammation and immune escape in patients with RCC
    corecore