48 research outputs found

    Tuning the atomic and domain structure of epitaxial films of multiferroic BiFeO3

    Get PDF
    Recent works have shown that the domain walls of room-temperature multiferroic BiFeO3 (BFO) thin films can display distinct and promising functionalities. It is thus important to understand the mechanisms underlying domain formation in these films. High-resolution x-ray diffraction and piezo-force microscopy, combined with first-principles simulations, have allowed us to characterize both the atomic and domain structure of BFO films grown under compressive strain on (001)-SrTiO3, as a function of thickness. We derive a twining model that describes the experimental observations and explains why the 71o domain walls are the ones commonly observed in these films. This understanding provides us with a new degree of freedom to control the structure and, thus, the properties of BiFeO3 thin films.Comment: RevTeX; 4 two-column pages; 4 color figures. Figure 2b does not seem to display well. A proper version can be found in the source fil

    Hamiltonian Hopf bifurcations in the discrete nonlinear Schr\"odinger trimer: oscillatory instabilities, quasiperiodic solutions and a 'new' type of self-trapping transition

    Full text link
    Oscillatory instabilities in Hamiltonian anharmonic lattices are known to appear through Hamiltonian Hopf bifurcations of certain time-periodic solutions of multibreather type. Here, we analyze the basic mechanisms for this scenario by considering the simplest possible model system of this kind where they appear: the three-site discrete nonlinear Schr\"odinger model with periodic boundary conditions. The stationary solution having equal amplitude and opposite phases on two sites and zero amplitude on the third is known to be unstable for an interval of intermediate amplitudes. We numerically analyze the nature of the two bifurcations leading to this instability and find them to be of two different types. Close to the lower-amplitude threshold stable two-frequency quasiperiodic solutions exist surrounding the unstable stationary solution, and the dynamics remains trapped around the latter so that in particular the amplitude of the originally unexcited site remains small. By contrast, close to the higher-amplitude threshold all two-frequency quasiperiodic solutions are detached from the unstable stationary solution, and the resulting dynamics is of 'population-inversion' type involving also the originally unexcited site.Comment: 25 pages, 11 figures, to be published in J. Phys. A: Math. Gen. Revised and shortened version with few clarifying remarks adde

    Pattern formation in directional solidification under shear flow. I: Linear stability analysis and basic patterns

    Full text link
    An asymptotic interface equation for directional solidification near the absolute stabiliy limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near the onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies, described in a companion paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.Comment: 20 pages, Latex, accepted for Physical Review

    Long-range order of Ni2+Ni^{2+} and Mn4+Mn^{4+} and ferromagnetism in multiferroic (Bi0.9La0.1)2NiMnO6Bi_{0.9}La_{0.1})_2NiMnO_6 thin films

    Get PDF
    Epitaxial thin films of biferroic (Bi1-xLax)(2)NiMnO6 have been grown on SrTiO3 (001) substrates. High resolution electron microscopy, energy-loss spectroscopy and synchrotron radiation have been used to demonstrate that, under appropriate growth conditions, stoichiometric, and fully oxidized thin films with long-range order of Ni2+ and Mn4+ ions can be obtained, despite the presence of randomly distributed dissimilar cations (Bi, La) at the A-site. This ordering leads to Ni2+-O-Mn4+ ferromagnetic interactions and its preservation in thin films is key for implementation of these biferroic materials in practical devices. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3524278

    Long-range order of Ni2+ and Mn4+ and ferromagnetism in multiferroic (Bi0.9La0.1)2NiMnO6 thin films

    Get PDF
    Epitaxial thin films of biferroic Bi1−xLax 2NiMnO6 have been grown on SrTiO3 001 substrates. High resolution electron microscopy, energy-loss spectroscopy and synchrotron radiation have been used to demonstrate that, under appropriate growth conditions, stoichiometric, and fully oxidized thin films with long-range order of Ni2+ and Mn4+ ions can be obtained, despite the presence of randomly distributed dissimilar cations Bi, La at the A-site. This ordering leads to Ni2+OMn4+ ferromagnetic interactions and its preservation in thin films is key for implementation of these biferroic materials in practical devices
    corecore