1,302 research outputs found
Recommended from our members
Priority ranking of safety-related systems for structural enhancement assessment at Savannah River Site
In order to extend the service life of safety related structures and systems in a logical manner, a Structural Enhancement Program was initiated to evaluate the structural integrity of eight (8) systems, namely: Cooling Water System, Emergency Cooling System, Moderator Recovery System supplementary Safety System, Water Removal System, Service Raw Water System, Service Clarified Water System, and River Water System. Since the level of importance of each system to reactor operations varies from one system to another, the scope of structural integrity evaluation for each system should be prioritized accordingly. This paper presents the assessment of system priority for structural evaluation based on a ranking methodology and specifies the level of structural evaluation consistent with the established priority. The effort was undertaken by a five-member panel representing four (4) major disciplines, including. structures, reactor engineering/operations, risk management and materials. The above systems were divided into a total of thirty-five (35) subsystem. These subsystems were then ranked with six (6) attributes, namely: Safety Classification, Degradation Mechanisms, Difficulty of Replacement, Failure Mode, Radiation Dose to Workers and Consequence of Failure. Each attribute was assigned a set of consequences or events with corresponding weighting scores. The results of the ranking process yielded two groups of subsystems, categorized as Priority I and II subsystems. The level of structural assessment was then formulated accordingly. The prioritized approach will allow more efficient allocation of resources, so that the Structural Enhancement Program can be implemented in a cost-effective and efficient manner
Perspectives of scientists on disseminating research findings to non-research audiences
BACKGROUND: Little is known about practices used to disseminate findings to non-research, practitioner audiences. This study describes the perspectives, experience and activities of dissemination & implementation (D&I) scientists around disseminating their research findings.
METHODS: The study explored D&I scientists\u27 experiences and recommendations for assessment of dissemination activities to non-research audiences. Existing list serves were used to recruit scientists. Respondents were asked three open-ended questions on an Internet survey about dissemination activities, recommendations for changing evaluation systems and suggestions to improve their own dissemination of their work.
RESULTS: Surveys were completed by 159 scientists reporting some training, funding and/or publication history in D&I. Three themes emerged across each of the three open-ended questions. Question 1 on evaluation generated the themes of: 1a) promotional review; 1b) funding requirements and 1c) lack of acknowledgement of dissemination activities. Question 2 on recommended changes generated the themes of: 2a) dissemination as a requirement of the academic promotion process; 2b) requirement of dissemination plan and 2c) dissemination metrics. Question 3 on personal changes to improve dissemination generated the themes of: 3a) allocation of resources for dissemination activities; 3b) emerging dissemination channels and 3c) identify and address issues of priority for stakeholders.
CONCLUSIONS: Our findings revealed different types of issues D&I scientists encounter when disseminating findings to clinical, public health or policy audiences and their suggestions to improve the process. Future research should consider key requirements which determine academic promotion and grant funding as an opportunity to expand dissemination efforts
X-ray Phase-Resolved Spectroscopy of PSRs B0531+21, B1509-58, and B0540-69 with RXTE
The Rossi X-ray Timing Explorer ({\sl RXTE}) has made hundreds of
observations on three famous young pulsars (PSRs) B0531+21 (Crab), B1509-58,
and B0540-69. Using the archive {\sl RXTE} data, we have studied the
phase-resolved spectral properties of these pulsars in details. The variation
of the X-ray spectrum with phase of PSR B0531+21 is confirmed here much more
precisely and more details are revealed than the previous studies: the spectrum
softens from the beginning of the first pulse, turns to harden right at the
pulse peak and becomes the hardest at the bottom of the bridge, softens
gradually until the second peak, and then softens rapidly. Different from the
previous studies, we found that the spectrum of PSR B1509-58 is significantly
harder in the center of the pulse, which is also in contrast to that of PSR
B0531+21. The variation of the X-ray spectrum of PSR B0540-69 seems similar to
that of PSR B1509-58, but with a lower significance. Using the about 10 years
of data span, we also studied the real time evolution of the spectra of these
pulsars, and no significant evolution has been detected. We have discussed
about the constraints of these results on theoretical models of pulsar X-ray
emission.Comment: 42 pages, 24 figure
Electron-Positron Jets from a Critically Magnetized Black Hole
The curved spacetime surrounding a rotating black hole dramatically alters
the structure of nearby electromagnetic fields. The Wald field which is an
asymptotically uniform magnetic field aligned with the angular momentum of the
hole provides a convenient starting point to analyze the effects of radiative
corrections on electrodynamics in curved spacetime. Since the curvature of the
spacetime is small on the scale of the electron's Compton wavelength, the tools
of quantum field theory in flat spacetime are reliable and show that a rotating
black hole immersed in a magnetic field approaching the quantum critical value
of ~G cm is unstable. Specifically, a maximally rotating
three-solar-mass black hole immersed in a magnetic field of ~G would be a copious producer of electron-positron pairs with a
luminosity of erg s.Comment: 10 pages, 6 figures, submitted to Phys. Rev.
The Contribution of Fermi Gamma-Ray Pulsars to the local Flux of Cosmic-Ray Electrons and Positrons
We analyze the contribution of gamma-ray pulsars from the first Fermi-Large
Area Telescope (LAT) catalogue to the local flux of cosmic-ray electrons and
positrons (e+e-). We present new distance estimates for all Fermi gamma-ray
pulsars, based on the measured gamma-ray flux and pulse shape. We then estimate
the contribution of gamma-ray pulsars to the local e+e- flux, in the context of
a simple model for the pulsar e+e- emission. We find that 10 of the Fermi
pulsars potentially contribute significantly to the measured e+e- flux in the
energy range between 100 GeV and 1 TeV. Of the 10 pulsars, 2 are old EGRET
gamma-ray pulsars, 2 pulsars were discovered with radio ephemerides, and 6 were
discovered with the Fermi pulsar blind-search campaign. We argue that known
radio pulsars fall in regions of parameter space where the e+e- contribution is
predicted to be typically much smaller than from those regions where Fermi-LAT
pulsars exist. However, comparing the Fermi gamma-ray flux sensitivity to the
regions of pulsar parameter space where a significant e+e- contribution is
predicted, we find that a few known radio pulsars that have not yet been
detected by Fermi can also significantly contribute to the local e+e- flux if
(i) they are closer than 2 kpc, and if (ii) they have a characteristic age on
the order of one mega-year.Comment: 21 pages, 6 figures, accepted for publication in JCA
Unstable states in QED of strong magnetic fields
We question the use of stable asymptotic scattering states in QED of strong
magnetic fields. To correctly describe excited Landau states and photons above
the pair creation threshold the asymptotic fields are chosen as generalized
Licht fields. In this way the off-shell behavior of unstable particles is
automatically taken into account, and the resonant divergences that occur in
scattering cross sections in the presence of a strong external magnetic field
are avoided. While in a limiting case the conventional electron propagator with
Breit-Wigner form is obtained, in this formalism it is also possible to
calculate -matrix elements with external unstable particles.Comment: Revtex, 7 pages. To appear in Phys. Rev. D53(2
The Crab Nebula: interpretation of CHANDRA observations
We interpret the observed X-ray morphology of the central part of the Crab
Nebula (torus + jets) in terms of the standard theory by Kennel and Coroniti
(1984). The only new element is the inclusion of anisotropy in the energy flux
from the pulsar in the theory. In the standard theory of relativistic winds,
the Lorentz factor of the particles in front of the shock that terminates the
pulsar relativistic wind depends on the polar angle as
, where and . The plasma flow in the wind is isotropic. After the
passage of the pulsar wind through the shock, the flow becomes subsonic with a
roughly constant (over the plerion volume) pressure ,
where is the plasma particle density and is the mean particle
energy. Since , a low-density region filled with the
most energetic electrons is formed near the equator. A bright torus of
synchrotron radiation develops here. Jet-like regions are formed along the
pulsar rotation axis, where the particle density is almost four orders of
magnitude higher than that in the equatorial plane, because the particle energy
there is four orders of magnitude lower. The energy of these particles is too
low to produce detectable synchrotron radiation. However, these quasi-jets
become comparable in brightness to the torus if additional particle
acceleration takes place in the plerion. We also present the results of our
study of the hydrodynamic interaction between an anisotropic wind and the
interstellar medium. We compare the calculated and observed distributions of
the volume intensity of X-ray radiation.Comment: 38 pages, 5 figures. To be published in Astronomy Letters, 2002, N 6,
p.
Resonant Cyclotron Radiation Transfer Model Fits to Spectra from Gamma-Ray Burst GRB870303
We demonstrate that models of resonant cyclotron radiation transfer in a
strong field (i.e. cyclotron scattering) can account for spectral lines seen at
two epochs, denoted S1 and S2, in the Ginga data for GRB870303. Using a
generalized version of the Monte Carlo code of Wang et al. (1988,1989b), we
model line formation by injecting continuum photons into a static
plane-parallel slab of electrons threaded by a strong neutron star magnetic
field (~ 10^12 G) which may be oriented at an arbitrary angle relative to the
slab normal. We examine two source geometries, which we denote "1-0" and "1-1,"
with the numbers representing the relative electron column densities above and
below the continuum photon source plane. We compare azimuthally symmetric
models, i.e. models in which the magnetic field is parallel to the slab normal,
with models having more general magnetic field orientations. If the bursting
source has a simple dipole field, these two model classes represent line
formation at the magnetic pole, or elsewhere on the stellar surface. We find
that the data of S1 and S2, considered individually, are consistent with both
geometries, and with all magnetic field orientations, with the exception that
the S1 data clearly favor line formation away from a polar cap in the 1-1
geometry, with the best-fit model placing the line-forming region at the
magnetic equator. Within both geometries, fits to the combined (S1+S2) data
marginally favor models which feature equatorial line formation, and in which
the observer's orientation with respect to the slab changes between the two
epochs. We interpret this change as being due to neutron star rotation, and we
place limits on the rotation period.Comment: LaTeX2e (aastex.cls included); 45 pages text, 17 figures (on 21
pages); accepted by ApJ (to be published 1 Nov 1999, v. 525
Magnetars and pulsars: a missing link
There is growing evidence that soft gamma-ray repeaters (SGRs) and anomalous
X-ray pulsars (AXPs) are isolated neutron stars with superstrong magnetic
fields, i.e., magnetars, marking them a distinguished species from the
conventional species of spindown-powered isolated neutron stars, i.e., radio
pulsars. The current arguments in favor of the magnetar interpretation of
SGR/AXP phenomenology will be outlined, and the two energy sources in
magnetars, i.e. a magnetic dissipation energy and a spindown energy, will be
reviewed. I will then discuss a missing link between magnetars and pulsars,
i.e., lack of the observational evidence of the spindown-powered behaviors in
known magnetars. Some recent theoretical efforts in studying such behaviors
will be reviewed along with some predictions testable in the near future.Comment: Invited talk at the Sixth Pacific Rim Conference on Stellar
Astrophysics, a tribute to Helmut A. Abt, July 11-17, 2002, Xi'an. To appear
in the proceedings (eds. K. S. Cheng, K. C. Leung & T. P. Li
Magnetic Photon Splitting: the S-Matrix Formulation in the Landau Representation
Calculations of reaction rates for the third-order QED process of photon
splitting in strong magnetic fields traditionally have employed either the
effective Lagrangian method or variants of Schwinger's proper-time technique.
Recently, Mentzel, Berg and Wunner (1994) presented an alternative derivation
via an S-matrix formulation in the Landau representation. Advantages of such a
formulation include the ability to compute rates near pair resonances above
pair threshold. This paper presents new developments of the Landau
representation formalism as applied to photon splitting, providing significant
advances beyond the work of Mentzel et al. by summing over the spin quantum
numbers of the electron propagators, and analytically integrating over the
component of momentum of the intermediate states that is parallel to field. The
ensuing tractable expressions for the scattering amplitudes are satisfyingly
compact, and of an appearance familiar to S-matrix theory applications. Such
developments can facilitate numerical computations of splitting considerably
both below and above pair threshold. Specializations to two regimes of interest
are obtained, namely the limit of highly supercritical fields and the domain
where photon energies are far inferior to that for the threshold of
single-photon pair creation. In particular, for the first time the
low-frequency amplitudes are simply expressed in terms of the Gamma function,
its integral and its derivatives. In addition, the equivalence of the
asymptotic forms in these two domains to extant results from effective
Lagrangian/proper-time formulations is demonstrated.Comment: 19 pages, 3 figures, REVTeX; accepted for publication in Phys. Rev.
- …