35 research outputs found

    The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes

    Get PDF
    Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease

    Kidney Disease in Childhood Cancer Survivors

    No full text
    Chronic glomerular and tubular nephrotoxicity has been reported in up to 50% and 25%, respectively, of children and adolescents treated with ifosfamide and up to 60% and 30% of those given cisplatin. Up to 35% of children have proteinuria and microalbuminuria, implying chronic glomerular damage, after unilateral nephrectomy for a renal tumour. We are still learning about nephrotoxicity due to the new targeted anticancer drugs. Overall, childhood cancer survivors have nine times greater risk of developing renal failure than their siblings. Such chronic nephrotoxicity may have multiple causes including certain chemotherapy agents (especially ifosfamide and platinum agents), radiotherapy to the kidneys, renal surgery, supportive care drugs and tumour-related factors. These cause a wide range of chronic glomerular and tubular toxicity, often with potentially severe clinical sequelae. Although many risk factors for developing nephrotoxicity, mostly patient and treatment-related, have been described, they do not predict all children who subsequently develop chronic renal damage. This suggests that other factors may be involved, such as genetic polymorphisms influencing drug metabolism. Further research is necessary to enable prediction or early detection of nephrotoxicity, whilst greater understanding of the pathogenesis of nephrotoxicity is needed to allow us to prevent its occurrence in the future

    Hsp70 expression and induction as a readout for detection of immune modulatory components in food

    No full text
    Stress proteins such as heat shock proteins (Hsps) are up-regulated in cells in response to various forms of stress, like thermal and oxidative stress and inflammation. Hsps prevent cellular damage and increase immunoregulation by the activation of anti-inflammatory T-cells. Decreased capacity for stress-induced Hsp expression is associated with immune disorders. Thus, therapeutic boosting Hsp expression might restore or enhance cellular stress resistance and immunoregulation. Especially food- or herb-derived phytonutrients may be attractive compounds to restore optimal Hsp expression in response to stress. In the present study, we explored three readout systems to monitor Hsp70 expression in a manner relevant for the immune system and evaluated novel Hsp co-inducers. First, intracellular staining and analysis by flow cytometry was used to detect stress and/or dietary compound induced Hsp70 expression in multiple rodent cell types efficiently. This system was used to screen a panel of food-derived extracts with potent anti-oxidant capacity. This strategy yielded the identity of several new enhancers of stress-induced Hsp70 expression, among them carvacrol, found in thyme and oregano. Second, CD4+ T-cell hybridomas were generated that specifically recognized an immunodominant Hsp70 peptide. These hybridomas were used to show that carvacrol enhanced Hsp70 levels increased T-cell activation. Third, we generated a DNAJB1-luc-O23 reporter cell line to show that carvacrol increased the transcriptional activation of a heat shock promoter in the presence of arsenite. These assay systems are generally applicable to identify compounds that affect the Hsp level in cells of the immune system

    Pharmacodynamic Model of Parathyroid Hormone Modulation by a Negative Allosteric Modulator of the Calcium-Sensing Receptor

    No full text
    In this study, a pharmacodynamic model is developed, based on calcium–parathyroid hormone (PTH) homeostasis, which describes the concentration–effect relationship of a negative allosteric modulator of the calcium-sensing receptor (CaR) in rats. Plasma concentrations of drug and PTH were determined from plasma samples obtained via serial jugular vein sampling following single subcutaneous doses of 1, 5, 45, and 150 mg/kg to male Sprague–Dawley rats (n = 5/dose). Drug pharmacokinetics was described by a one-compartment model with first-order absorption and linear elimination. Concentration-time profiles of PTH were characterized using a model in which the compound allosterically modulates Ca+2 binding to the CaR that, in turn, modulates PTH through a precursor-pool indirect response model. Additionally, negative feedback was incorporated to account for tolerance observed at higher dose levels. Model fitting and parameter estimation were conducted using the maximum likelihood algorithm. The proposed model well characterized the data and provided compound specific estimates of the Ki and cooperativity constant (α) of 1.47 ng/mL and 0.406, respectively. In addition, the estimated model parameters for PTH turnover were comparable to that previously reported. The final generalized model is capable of characterizing both PTH–Ca+2 homeostasis and the pharmacokinetics and pharmacodynamics associated with the negative allosteric CaR modulator. As such, the model provides a simple platform for analysis of drugs targeting the PTH–Ca+2 system
    corecore