19 research outputs found

    Pulse pressure variation and volume responsiveness during acutely increased pulmonary artery pressure: an experimental study

    Get PDF
    We found that pulse pressure variation (PPV) did not predict volume responsiveness in patients with increased pulmonary artery pressure. This study tests the hypothesis that PPV does not predict fluid responsiveness during an endotoxin-induced acute increase in pulmonary artery pressure and right ventricular loading

    Thromboelastometry for the assessment of coagulation abnormalities in early and established adult sepsis: a prospective cohort study

    Get PDF
    INTRODUCTION: The inflammatory response to an invading pathogen in sepsis leads to complex alterations in hemostasis by dysregulation of procoagulant and anticoagulant factors. Recent treatment options to correct these abnormalities in patients with sepsis and organ dysfunction have yielded conflicting results. Using thromboelastometry (ROTEM(R)), we assessed the course of hemostatic alterations in patients with sepsis and related these alterations to the severity of organ dysfunction. METHODS: This prospective cohort study included 30 consecutive critically ill patients with sepsis admitted to a 30-bed multidisciplinary intensive care unit (ICU). Hemostasis was analyzed with routine clotting tests as well as thromboelastometry every 12 hours for the first 48 hours, and at discharge from the ICU. Organ dysfunction was quantified using the Sequential Organ Failure Assessment (SOFA) score. RESULTS: Simplified Acute Physiology Score II and SOFA scores at ICU admission were 52 +/- 15 and 9 +/- 4, respectively. During the ICU stay the clotting time decreased from 65 +/- 8 seconds to 57 +/- 5 seconds (P = 0.021) and clot formation time (CFT) from 97 +/- 63 seconds to 63 +/- 31 seconds (P = 0.017), whereas maximal clot firmness (MCF) increased from 62 +/- 11 mm to 67 +/- 9 mm (P = 0.035). Classification by SOFA score revealed that CFT was slower (P = 0.017) and MCF weaker (P = 0.005) in patients with more severe organ failure (SOFA >or= 10, CFT 125 +/- 76 seconds, and MCF 57 +/- 11 mm) as compared with patients who had lower SOFA scores (SOFA <10, CFT 69 +/- 27, and MCF 68 +/- 8). Along with increasing coagulation factor activity, the initially increased International Normalized Ratio (INR) and prolonged activated partial thromboplastin time (aPTT) corrected over time. CONCLUSIONS: Key variables of ROTEM(R) remained within the reference ranges during the phase of critical illness in this cohort of patients with severe sepsis and septic shock without bleeding complications. Improved organ dysfunction upon discharge from the ICU was associated with shortened coagulation time, accelerated clot formation, and increased firmness of the formed blood clot when compared with values on admission. With increased severity of illness, changes of ROTEM(R) variables were more pronounced

    Arterial blood pressure during early sepsis and outcome

    Get PDF
    Objective: To evaluate the association between arterial blood pressure (ABP) during the first 24h and mortality in sepsis. Design: Retrospective cohort study. Setting: Multidisciplinary intensive care unit (ICU). Patients and participants: A total of 274 septic patients. Interventions: None. Measurements and results: Hemodynamic, and laboratory parameters were extracted from a PDMS database. The hourly time integral of ABP drops below clinically relevant systolic arterial pressure (SAP), mean arterial pressure (MAP), and mean perfusion pressure (MPP=MAP−central venous pressure) levels was calculated for the first 24h after ICU admission and compared with 28-day-mortality. Binary and linear regression models (adjusted for SAPS II as a measure of disease severity), and a receiver operating characteristic (ROC) analysis were applied. The areas under the ROC curve were largest for the hourly time integrals of ABP drops below MAP60mmHg (0.779 vs. 0.764 for ABP drops below MAP55mmHg; P≀0.01) and MPP 45mmHg. No association between the hourly time integrals of ABP drops below certain SAP levels and mortality was detected. One or more episodes of MAP<60mmHg increased the risk of death by 2.96 (CI 95%, 1.06-10.36, P=0.04). The area under the ROC curve to predict the need for renal replacement therapy was highest for the hourly time integral of ABP drops below MAP75mmHg. Conclusions: A MAP level≄60mmHg may be as safe as higher MAP levels during the first 24h of ICU therapy in septic patients. A higher MAP may be required to maintain kidney functio

    Arterial blood pressure during early sepsis and outcome

    Get PDF
    OBJECTIVE: To evaluate the association between arterial blood pressure (ABP) during the first 24 h and mortality in sepsis. DESIGN: Retrospective cohort study. SETTING: Multidisciplinary intensive care unit (ICU). PATIENTS AND PARTICIPANTS: A total of 274 septic patients. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: Hemodynamic, and laboratory parameters were extracted from a PDMS database. The hourly time integral of ABP drops below clinically relevant systolic arterial pressure (SAP), mean arterial pressure (MAP), and mean perfusion pressure (MPP = MAP - central venous pressure) levels was calculated for the first 24 h after ICU admission and compared with 28-day-mortality. Binary and linear regression models (adjusted for SAPS II as a measure of disease severity), and a receiver operating characteristic (ROC) analysis were applied. The areas under the ROC curve were largest for the hourly time integrals of ABP drops below MAP 60 mmHg (0.779 vs. 0.764 for ABP drops below MAP 55 mmHg; P or = 60 mmHg may be as safe as higher MAP levels during the first 24 h of ICU therapy in septic patients. A higher MAP may be required to maintain kidney function

    Ominous triad triggered by high-dose glucocorticosteroid therapy.

    No full text
    Glucocorticosteroids (CS) play a key role in the treatment of numerous diseases. Nonetheless, they can be accompanied by several adverse effects. We present the case of a 51-year-old woman who was treated with high-dose CS for a relapse of her multiple sclerosis. After 5 days of treatment, the patient developed severe diabetic ketoacidosis, hypertriglyceridemia and acute pancreatitis-a potentially life-threatening triad which has previously been described, in our case, however, for the first time as a complication of CS therapy. Our patient's condition was further aggravated by a circulatory shock, haemodynamic relevant bleeding from a duodenal ulcer and psychotic symptoms. In the intensive care unit, intravenous insulin infusion, fluid resuscitation, catecholamine support, electrolyte supplementation, endoscopic haemoclipping and antibiotic and antipsychotic treatment were administered, leading to a continuous improvement of the patient's health state

    Effects of lung recruitment maneuvers on splanchnic organ perfusion during endotoxin-induced pulmonary arterial hypertension

    No full text
    Lung recruitment maneuvers (RMs), used to reopen atelectatic lung units and to improve oxygenation during mechanical ventilation, may result in hemodynamic impairment. We hypothesize that pulmonary arterial hypertension aggravates the consequences of RMs in the splanchnic circulation. Twelve anesthetized pigs underwent laparotomy and prolonged postoperative ventilation. Systemic, regional, and organ blood flows were monitored. After 6 h (= baseline), a recruitment maneuver was performed with sustained inflation of the lungs. Thereafter, the pigs were randomly assigned to group C (control, n = 6) or group E with endotoxin-induced pulmonary arterial hypertension (n = 6). Endotoxemia resulted in a normotensive and hyperdynamic state and a deterioration of the oxygenation index by 33%. The RM was then repeated in both groups. Pulmonary artery pressure increased during lipopolysaccharide infusion from 17 ± 2 mmHg (mean ± SD) to 31 ± 10 mmHg and remained unchanged in controls (P < 0.05). During endotoxemia, RM decreased aortic pulse pressure from 37 ± 14 mmHg to 27 ± 13 mmHg (mean ± SD, P = 0.024). The blood flows of the renal artery, hepatic artery, celiac trunk, superior mesenteric artery, and portal vein decreased to 71% ± 21%, 69% ± 20%, 76% ± 16%, 79% ± 18%, and 81% ± 12%, respectively, of baseline flows before RM (P < 0.05 all). Organ perfusion of kidney cortex, kidney medulla, liver, and jejunal mucosa in group E decreased to 65% ± 19%, 77% ± 13%, 66% ± 26%, and 71% ± 12%, respectively, of baseline flows (P < 0.05 all). The corresponding recovery to at least 90% of baseline regional blood flow and organ perfusion lasted 1 to 5 min. Importantly, the decreases in regional blood flows and organ perfusion and the time to recovery of these flows did not differ from the controls. In conclusion, lipopolysaccharide-induced pulmonary arterial hypertension does not aggravate the RM-induced significant but short-lasting decreases in systemic, regional, and organ blood flows

    Continuous thoracic epidural anesthesia improves gut mucosal microcirculation in rats with sepsis

    No full text
    Microcirculatory dysfunction contributes significantly to tissue hypoxia and multiple organ failure in sepsis. Ischemia of the gut and intestinal hypoxia are especially relevant for the evolution of sepsis because the mucosal barrier function may be impaired, leading to translocation of bacteria and toxins. Because sympathetic blockade enhances intestinal perfusion under physiologic conditions, we hypothesized that thoracic epidural anesthesia (TEA) may attenuate microcirculatory perturbations during sepsis. The present study was designed as a prospective and controlled laboratory experiment to assess the effects of continuous TEA on the mucosal microcirculation in a cecal ligation and perforation model of sepsis in rats. Anesthetized Sprague-Dawley rats underwent laparotomy and cecal ligation and perforation to induce sepsis. Subsequently, either bupivacaine 0.125% (n = 10) or isotonic sodium chloride solution (n = 9) was continuously infused via the thoracic epidural catheter for 24 h. In addition, a sham laparotomy was carried out in eight animals. Intravital videomicroscopy was then performed on six to ten villi of ileum mucosa. The capillary density was measured as areas encircled by perfused capillaries, that is, intercapillary areas. The TEA accomplished recruitment of microcirculatory units in the intestinal mucosa by decreasing total intercapillary areas (1,317 +/- 403 vs. 1,001 +/- 236 microm2) and continuously perfused intercapillary areas (1,937 +/- 512 vs. 1,311 +/- 678 microm2, each P < 0.05). Notably, TEA did not impair systemic hemodynamic variables beyond the changes caused by sepsis itself. Therefore, sympathetic blockade may represent a therapeutic option to treat impaired microcirculation in the gut mucosa resulting from sepsis. Additional studies are warranted to assess the microcirculatory effects of sympathetic blockade on other splanchnic organs in systemic inflammation

    Hemodynamic effects of thoracic epidural analgesia in ovine hyperdynamic endotoxemia

    No full text
    BACKGROUND AND OBJECTIVES: Thoracic epidural analgesia (TEA) is increasingly used for perioperative analgesia. If patients with TEA develop sepsis or systemic inflammatory response subsequent to extended surgery the question arises if it would be safe to continue TEA with its beneficial effects of improving gastrointestinal perfusion and augmenting tissue oxygenation. A major concern in this regard is hemodynamic instability that might ensue from TEA-induced vasodilation. The objective of the present study was to assess the effects of TEA on systemic and pulmonary hemodynamics in a sepsis model of hyperdynamic endotoxemia. METHODS: After a baseline measurement in healthy sheep (n = 14), Salmonella thyphosa endotoxin was continuously infused at a rate of 10 ngxkg(-1)xmin(-1) over 16 hours. The surviving animals (n = 12) were then randomly assigned to 1 of 2 study groups. In the treatment group (n = 6), continuous TEA was initiated with 0.1 mLxkg(-1) bupivacaine 0.125% and maintained with 0.1 mLxkg(-1)xh(-1). In the control group (n = 6) the same amount of isotonic sodium saline solution was injected at the same rate through the epidural catheter. RESULTS: In both experimental groups cardiac index increased and systemic vascular resistance decreased concurrently (each P < .05). Functional epidural blockade in the TEA group was confirmed by sustained suppression of the cutaneous (or panniculus) reflex. During the observational period of 6 hours neither systemic nor pulmonary circulatory variables were impaired by TEA. CONCLUSIONS: From a hemodynamic point of view, TEA presents as a safe treatment option in sepsis or systemic inflammatory response syndrome

    Effects of thoracic epidural anesthesia on hemodynamics and global oxygen transport in ovine endotoxemia

    No full text
    Besides providing effective analgesia, thoracic epidural anesthesia (TEA) has been shown to decrease perioperative morbidity and mortality. Because of its vasodilatory properties in association with the sympathetic blockade, however, TEA may potentially aggravate cardiovascular dysfunctions resulting from sepsis and systemic inflammatory response syndrome. The objective of the present study was to assess the effects of TEA on hemodynamics, global oxygen transport, and renal function in ovine endotoxemia. After a baseline measurement in healthy sheep (n = 18), Salmonella typhosa endotoxin was centrally infused at incremental doses to induce and maintain a hypotensive-hypodynamic circulation using an established protocol. The animals were then randomly assigned to one of two groups. In the treatment group, continuous TEA was initiated with 0.1 mL.kg of 0.125% bupivacaine at the onset of endotoxemia and maintained with 0.1 mL.kg.h. In the control group, the same amount of isotonic sodium chloride solution was injected through the epidural catheter. In the animals surviving the entire experiment (n = 7 per group), cardiac index and mean arterial pressure decreased in a dose-dependent manner during endotoxin infusion. In the TEA group, neither systemic hemodynamics nor global oxygen transport were impaired beyond the changes caused by endotoxemia itself. Urinary output was increased in the TEA group as compared with the control group (P < 0.05). In this model of endotoxic shock, TEA improved renal perfusion without affecting cardiopulmonary hemodynamics and global oxygen transport
    corecore