127 research outputs found
Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow
We confront a recent visco-plastic description of dense granular flows [P.
Jop et al, Nature, {\bf 441} (2006) 727] with multi-directional inhomogeneous
steady flows observed in non-smooth contact dynamics simulations of 2D
half-filled rotating drums. Special attention is paid to check separately the
two underlying fundamental statements into which the considered theory can be
recast, namely (i) a single relation between the invariants of stress and
strain rate tensors and (ii) the alignment between these tensors.
Interestingly, the first prediction is fairly well verified over more than four
decades of small strain rate, from the surface rapid flow to the quasi-static
creep phase, where it is usually believed to fail because of jamming. On the
other hand, the alignment between stress and strain rate tensors is shown to
fail over the whole flow, what yields an apparent violation of the
visco-plastic rheology when applied without care. In the quasi-static phase,
the particularly large misalignment is conjectured to be related to transient
dilatancy effects
Super-diffusion around the rigidity transition: Levy and the Lilliputians
By analyzing the displacement statistics of an assembly of horizontally
vibrated bidisperse frictional grains in the vicinity of the jamming transition
experimentally studied before, we establish that their superdiffusive motion is
a genuine Levy flight, but with `jump' size very small compared to the diameter
of the grains. The vibration induces a broad distribution of jumps that are
random in time, but correlated in space, and that can be interpreted as
micro-crack events at all scales. As the volume fraction departs from the
critical jamming density, this distribution is truncated at a smaller and
smaller jump size, inducing a crossover towards standard diffusive motion at
long times. This interpretation contrasts with the idea of temporally
persistent, spatially correlated currents and raises new issues regarding the
analysis of the dynamics in terms of vibrational modes.Comment: 7 pages, 6 figure
The Jamming point street-lamp in the world of granular media
The Jamming of soft spheres at zero temperature, the J-point, has been
extensively studied both numerically and theoretically and can now be
considered as a safe location in the space of models, where a street lamp has
been lit up. However, a recent work by Ikeda et al, 2013 reveals that, in the
Temperature/Packing fraction parameter space, experiments on colloids are
actually rather far away from the scaling regime illuminated by this lamp. Is
it that the J-point has little to say about real system? What about granular
media? Such a-thermal, frictional, systems are a-priori even further away from
the idealized case of thermal soft spheres. In the past ten years, we have
systematically investigated horizontally shaken grains in the vicinity of the
Jamming transition. We discuss the above issue in the light of very recent
experimental results. First, we demonstrate that the contact network exhibits a
remarkable dynamics, with strong heterogeneities, which are maximum at a
packing fraction phi star, distinct and smaller than the packing fraction phi
dagger, where the average number of contact per particle starts to increase.
The two cross-overs converge at point J in the zero mechanical excitation
limit. Second, a careful analysis of the dynamics on time scales ranging from a
minute fraction of the vibration cycle to several thousands of cycles allows us
to map the behaviors of this shaken granular system onto those observed for
thermal soft spheres and demonstrate that some light of the J-point street-lamp
indeed reaches the granular universe.Comment: 20 pages, 23 figures, submitted to Soft Matte
Avalanches and Dynamical Correlations in supercooled liquids
We identify the pattern of microscopic dynamical relaxation for a two
dimensional glass forming liquid. On short timescales, bursts of irreversible
particle motion, called cage jumps, aggregate into clusters. On larger time
scales, clusters aggregate both spatially and temporally into avalanches. This
propagation of mobility, or dynamic facilitation, takes place along the soft
regions of the systems, which have been identified by computing
isoconfigurational Debye-Waller maps. Our results characterize the way in which
dynamical heterogeneity evolves in moderately supercooled liquids and reveal
that it is astonishingly similar to the one found for dense glassy granular
media.Comment: 4 pages, 3 figure
Critical scaling and heterogeneous superdiffusion across the jamming/rigidity transition of a granular glass
The dynamical properties of a dense horizontally vibrated bidisperse granular
monolayer are experimentally investigated. The quench protocol produces states
with a frozen structure of the assembly, but the remaining degrees of freedom
associated with contact dynamics control the appearance of macroscopic
rigidity. We provide decisive experimental evidence that this transition is a
critical phenomenon, with increasingly collective and heterogeneous
rearrangements occurring at length scales much smaller than the grains'
diameter, presumably reflecting the contact force network fluctuations.
Dynamical correlation time and length scales soar on both sides of the
transition, as the volume fraction varies over a remarkably tiny range (). We characterize the motion of individual grains,
which becomes super-diffusive at the jamming transition , signaling
long-ranged temporal correlations. Correspondingly, the system exhibits
long-ranged four-point dynamical correlations in space that obey critical
scaling at the transition density.Comment: 4 pages, 8 figure
Temperature in nonequilibrium systems with conserved energy
We study a class of nonequilibrium lattice models which describe local
redistributions of a globally conserved energy. A particular subclass can be
solved analytically, allowing to define a temperature T_{th} along the same
lines as in the equilibrium microcanonical ensemble. The
fluctuation-dissipation relation is explicitely found to be linear, but its
slope differs from the inverse temperature T_{th}^{-1}. A numerical
renormalization group procedure suggests that, at a coarse-grained level, all
models behave similarly, leading to a two-parameter description of their
macroscopic properties.Comment: 4 pages, 1 figure, final versio
Turbulence lifetimes: what we can learn from the physics of glasses
In this note, we critically discuss the issue of the possible finiteness of
the turbulence lifetime in subcritical transition to turbulence in shear flows,
which attracted a lot of interest recently. We briefly review recent
experimental and numerical results, as well as theoretical proposals, and
compare the difficulties arising in assessing this issue in subcritical shear
flow with that encountered in the study of the glass transition. In order to go
beyond the purely methodological similarities, we further elaborate on this
analogy and propose a qualitative mapping between these two apparently
unrelated situations, which could possibly foster new directions of research in
subcritical shear flows.Comment: 10 pages, 4 figure
- …