14 research outputs found

    Estimation of pure qubits on circles

    Full text link
    Gisin and Popescu [PRL, 83, 432 (1999)] have shown that more information about their direction can be obtained from a pair of anti-parallel spins compared to a pair of parallel spins, where the first member of the pair (which we call the pointer member) can point equally along any direction in the Bloch sphere. They argued that this was due to the difference in dimensionality spanned by these two alphabets of states. Here we consider similar alphabets, but with the first spin restricted to a fixed small circle of the Bloch sphere. In this case, the dimensionality spanned by the anti-parallel versus parallel alphabet is now equal. However, the anti-parallel alphabet is found to still contain more information in general. We generalize this to having N parallel spins and M anti-parallel spins. When the pointer member is restricted to a small circle these alphabets again span spaces of equal dimension, yet in general, more directional information can be found for sets with smaller |N-M| for any fixed total number of spins. We find that the optimal POVMs for extracting directional information in these cases can always be expressed in terms of the Fourier basis. Our results show that dimensionality alone cannot explain the greater information content in anti-parallel combinations of spins compared to parallel combinations. In addition, we describe an LOCC protocol which extract optimal directional information when the pointer member is restricted to a small circle and a pair of parallel spins are supplied.Comment: 23 pages, 8 figure

    Slepian functions and their use in signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla

    Scalar and vector Slepian functions, spherical signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and, particularly for applications in the geosciences, for scalar and vectorial signals defined on the surface of a unit sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verlag. This is a slightly modified but expanded version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the Handbook, when it was called: Slepian functions and their use in signal estimation and spectral analysi

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    Clifford-Jacobi Polynomials and the Associated Continuous Wavelet Transform in Euclidean Space

    No full text
    Specific wavelet kernel functions for a continuous wavelet transform in Euclidean space are presented within the framework of Clifford analysis. These multi-dimensional wavelets are constructed by taking the Clifford-monogenic extension to Rm+1 of specific functions in R-m generalizing the traditional Jacobi weights. The notion of Clifford-monogenic function is a direct higher dimensional generalization of that of holomorphic function in the complex plane. Moreover, crucial to this construction is the orthogonal decomposition of the space of square integrable functions into the Hardy space H-2(R-m) and its orthogonal complement. In this way a nice relationship is established between the theory of the Clifford Continuous Wavelet Transform on the one hand, and the theory of Hardy spaces on the other hand. Furthermore, also new multi-dimensional polynomials, the so-called Clifford-Jacobi polynomials, are obtained
    corecore