55 research outputs found
Performance and on-sky optical characterization of the SPTpol instrument
In January 2012, the 10m South Pole Telescope (SPT) was equipped with a
polarization-sensitive camera, SPTpol, in order to measure the polarization
anisotropy of the cosmic microwave background (CMB). Measurements of the
polarization of the CMB at small angular scales (~several arcminutes) can
detect the gravitational lensing of the CMB by large scale structure and
constrain the sum of the neutrino masses. At large angular scales (~few
degrees) CMB measurements can constrain the energy scale of Inflation. SPTpol
is a two-color mm-wave camera that consists of 180 polarimeters at 90 GHz and
588 polarimeters at 150 GHz, with each polarimeter consisting of a dual
transition edge sensor (TES) bolometers. The full complement of 150 GHz
detectors consists of 7 arrays of 84 ortho-mode transducers (OMTs) that are
stripline coupled to two TES detectors per OMT, developed by the TRUCE
collaboration and fabricated at NIST. Each 90 GHz pixel consists of two
antenna-coupled absorbers coupled to two TES detectors, developed with Argonne
National Labs. The 1536 total detectors are read out with digital
frequency-domain multiplexing (DfMUX). The SPTpol deployment represents the
first on-sky tests of both of these detector technologies, and is one of the
first deployed instruments using DfMUX readout technology. We present the
details of the design, commissioning, deployment, on-sky optical
characterization and detector performance of the complete SPTpol focal plane.Comment: 15 pages, 6 figures. Conference: SPIE Astronomical Telescopes and
Instrumentation 201
Thermal Fluctuation Noise in Mo/Au Superconducting Transition-Edge Sensor Microcalorimeters
In many superconducting transition-edge sensor (TES) microcalorimeters, the measured electrical noise exceeds theoretical estimates based on a thermal model of a single body thermally connected to a heat bath. Here, we report on noise and complex impedance measurements of a range of designs of TESs made with a Mo/Au bilayer. We have fitted the measured data using a two-body model, where the x-ray absorber and the TES are connected by an internal thermal conductance Gae. We find that the so-called excess noise measured in these devices is consistent with the noise generated from the internal thermal fluctuations between the x-ray absorber and the TES. Our fitted parameters are consistent with the origin of Gae being from the finite thermal conductance of the TES itself. These results suggest that even in these relatively low resistance Mo/Au TESs, the internal thermal conductance of the TES may add significant additional noise and could account for all the measured excess noise. Furthermore, we find that around regions of the superconducting transition with rapidly changing derivative of resistance with respect to temperature, an additional noise mechanism may dominate. These observations may lead to a greater understanding of TES devices and allow the design of TES microcalorimeters with improved performance
Feedhorn-coupled TES polarimeter camera modules at 150 GHz for CMB polarization measurements with SPTpol
The SPTpol camera is a dichroic polarimetric receiver at 90 and 150 GHz.
Deployed in January 2012 on the South Pole Telescope (SPT), SPTpol is looking
for faint polarization signals in the Cosmic Microwave Background (CMB). The
camera consists of 180 individual Transition Edge Sensor (TES) polarimeters at
90 GHz and seven 84-polarimeter camera modules (a total of 588 polarimeters) at
150 GHz. We present the design, dark characterization, and in-lab optical
properties of the 150 GHz camera modules. The modules consist of
photolithographed arrays of TES polarimeters coupled to silicon platelet arrays
of corrugated feedhorns, both of which are fabricated at NIST-Boulder. In
addition to mounting hardware and RF shielding, each module also contains a set
of passive readout electronics for digital frequency-domain multiplexing. A
single module, therefore, is fully functional as a miniature focal plane and
can be tested independently. Across the modules tested before deployment, the
detectors average a critical temperature of 478 mK, normal resistance R_N of
1.2 Ohm, unloaded saturation power of 22.5 pW, (detector-only) optical
efficiency of ~ 90%, and have electrothermal time constants < 1 ms in
transition.Comment: 15 pages, 11 figure
Design and characterization of 90 GHz feedhorn-coupled TES polarimeter pixels in the SPTpol camera
The SPTpol camera is a two-color, polarization-sensitive bolometer receiver,
and was installed on the 10 meter South Pole Telescope in January 2012. SPTpol
is designed to study the faint polarization signals in the Cosmic Microwave
Background, with two primary scientific goals. One is to constrain the
tensor-to-scalar ratio of perturbations in the primordial plasma, and thus
constrain the space of permissible inflationary models. The other is to measure
the weak lensing effect of large-scale structure on CMB polarization, which can
be used to constrain the sum of neutrino masses as well as other growth-related
parameters. The SPTpol focal plane consists of seven 84-element monolithic
arrays of 150 GHz pixels (588 total) and 180 individual 90 GHz single-pixel
modules. In this paper we present the design and characterization of the 90 GHz
modules
South Pole Telescope Software Systems: Control, Monitoring, and Data Acquisition
We present the software system used to control and operate the South Pole
Telescope. The South Pole Telescope is a 10-meter millimeter-wavelength
telescope designed to measure anisotropies in the cosmic microwave background
(CMB) at arcminute angular resolution. In the austral summer of 2011/12, the
SPT was equipped with a new polarization-sensitive camera, which consists of
1536 transition-edge sensor bolometers. The bolometers are read out using 36
independent digital frequency multiplexing (\dfmux) readout boards, each with
its own embedded processors. These autonomous boards control and read out data
from the focal plane with on-board software and firmware. An overall control
software system running on a separate control computer controls the \dfmux
boards, the cryostat and all other aspects of telescope operation. This control
software collects and monitors data in real-time, and stores the data to disk
for transfer to the United States for analysis
The Effects of Normal Metal Stripes on TES Performance
Exploring the effects of size and geometry of normal metal features on the transition shapes and performance of transition-edge sensor microcalorimeters. The spectral resolution of transition-edge sensor (TES) microcalorimeters is very sensitive to the specific dependencies of the resistance R in the superconducting transition on the current I, magnetic field B, and temperature T. In particular, it has been shown that transitions that are very steep in (R,T) space lead to a significant noise term, in excess of conventional expectations. This so-called unexplained noise is known to be reduced by the addition of normal metal stripes across the TES perpendicular to the direction of current flow. These normal metal stripes have been shown to drastically alter the oscillatory patterns seen in measurements of the critical current as a function of magnetic field. However, there are many remaining questions about the exact impact of the stripes on current distributions within the TES, the Fraunhofer pattern and, therefore, the shape of the R(I, B, T) surface. Through measurements of the resistance under DC bias of TES devices of various sizes, with different stripe patterns and dimensions, we will discuss how these stripes can affect the R(I, B, T) surface. In addition, using measurements and analysis of the noise spectra of various devices we will present how these changes to the stripe pattern may affect the performance of the TES. In particular, we will discuss strategies to reduce the presence of localized discontinuities in the derivative of R, associated with increased noise, while maintaining the globally low levels of unexplained noise currently achieved with conventional metal stripe patterns. Implementing these strategies is a path towards producing large arrays with highly uniform transitions and high spectral resolution. These large uniform arrays will be required for future x-ray astronomy applications, such as the X-IFU on ATHENA
Gender and Status Offending: Judicial Paternalism in Juvenile Justice Processing
This study examines the relationship between gender and juvenile justice processing outcomes for status offenders. The feminist criminological concept of judicial paternalism suggests that official justice systems, as gendered institutions with traditional patriarchal norms, will treat delinquent girls differently than delinquent boys. This paternalistic effect should be especially prevalent for status offenses, which are used to enforce institutional (parental, school, civic, parochial) authority. Using 1999-2001 juvenile processing data for 3,329 status offense referrals to the Oklahoma Office of Juvenile Affairs (N = 3,329) and controlling for age, race, prior history, type of status offense, and measures of social class and urban environment, our results indicate that (a) girls outnumber boys among status offenders, (b) girls are more likely than boys to have their petitions filed for review, (c) girls are less likely than boys to be adjudicated guilty, and (d) girls are just as likely as boys to receive an incarcerated custody sentence as opposed to probation. We argue that these results illustrate the manifestation of the juvenile justice system as a gendered institution in which the adjudication of status offenders reflects judicial paternalism.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
- …