4 research outputs found
RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients
Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p
Towards stratified treatment of JIA: machine learning identifies subtypes in response to methotrexate from four UK cohorts
BACKGROUND: Methotrexate (MTX) is the gold-standard first-line disease-modifying anti-rheumatic drug for juvenile idiopathic arthritis (JIA), despite only being either effective or tolerated in half of children and young people (CYP). To facilitate stratified treatment of early JIA, novel methods in machine learning were used to i) identify clusters with distinct disease patterns following MTX initiation; ii) predict cluster membership; and iii) compare clusters to existing treatment response measures. METHODS: Discovery and verification cohorts included CYP who first initiated MTX before January 2018 in one of four UK multicentre prospective cohorts of JIA within the CLUSTER consortium. JADAS components (active joint count, physician (PGA) and parental (PGE) global assessments, ESR) were recorded at MTX start and over the following year. Clusters of MTX ‘response’ were uncovered using multivariate group-based trajectory modelling separately in discovery and verification cohorts. Clusters were compared descriptively to ACR Pedi 30/90 scores, and multivariate logistic regression models predicted cluster-group assignment. FINDINGS: The discovery cohorts included 657 CYP and verification cohorts 1241 CYP. Six clusters were identified: Fast improvers (11%), Slow Improvers (16%), Improve-Relapse (7%), Persistent Disease (44%), Persistent PGA (8%) and Persistent PGE (13%), the latter two characterised by improvement in all features except one. Factors associated with clusters included ethnicity, ILAR category, age, PGE, and ESR scores at MTX start, with predictive model area under the curve values of 0.65–0.71. Singular ACR Pedi 30/90 scores at 6 and 12 months could not capture speeds of improvement, relapsing courses or diverging disease patterns. INTERPRETATION: Six distinct patterns following initiation of MTX have been identified using methods in artificial intelligence. These clusters demonstrate the limitations in traditional yes/no treatment response assessment (e.g., ACRPedi30) and can form the basis of a stratified medicine programme in early JIA. FUNDING: Medical Research Council, Versus Arthritis, Great Ormond Street Hospital Children's Charity, Olivia’s Vision, and the National Institute for Health Research