17 research outputs found

    Hydrogels: Next Generation Atmospheric Water Harvesting Materials

    Get PDF
    Hydrogels could harvest atmospheric moisture to produce clean drinking water mitigating the global water scarcity woes in future

    Biopolymer-Based Materials from Polysaccharides: Properties, Processing, Characterization and Sorption Applications

    Get PDF
    Biopolymers are polymeric materials derived from biological sources. Due to their renewability, abundance, biodegradability and other unique properties such as high adsorption capabilities and ease of functionalization they have been investigated for several industrial applications including sorption. Polysaccharides especially cellulose, chitin and chitosan are important biopolymers because of their high abundance, wide distribution and low cost of production. This chapter provides an overview of properties, common processing methods, and material characterization of three commonly studied biopolymers namely cellulose, chitin and chitosan. It provides a thorough review on recent developments on utilization of cellulose, chitin, and chitosan-based materials for various sorption applications. Specifically, their application and efficiency in organic dye removal, heavy metals removal, oil and solvent spillage cleanup, and CO2 adsorption are presented and discussed

    Novel Acumens into Biodegradation: Impact of Nanomaterials and Their Contribution

    Get PDF
    Biodegradation is the most viable alternative for numerous health and environmental issues associated with non-biodegradable materials. In recent years, there has been considerable interest in biodegradable nanomaterials due to their relative abundance, environmental benignity, low cost, easy use, and tunable properties. This chapter covers an overview of biodegradation, factors and challenges associated with biodegradation processes, involvement of nanotechnology and nanomaterials in biodegradation, and biodegradable nanomaterials. Furthermore, current chapter extensively discusses the most recent applications of biodegradable nanomaterials that have recently been explored in the areas of food packaging, energy, environmental remediation, and nanomedicine. Overall, this chapter provides a synopsis of how the involvement of nanotechnology would benefit the process of biodegradation

    Borax-cross-linked guar gum-manganese dioxide composites for oxidative decolorization of methylene blue

    No full text
    © 2019 Rohan S. Dassanayake et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Borax-cross-linked guar gum-manganese dioxide (GGB-MnO2) composite was synthesized using an environmentally friendly synthesis route and investigated for its efficiency of decolorizing methylene blue (MB) dye solution by an ultraviolet-visible (UV-Vis) spectrophotometric study. The GGB-MnO2 composite was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The composite (1.2 g/L) exhibited excellent oxidative decolorization of MB (30 mg/L, 50 mL) solution to over 99% in 6, 13, and 40 min at pH 4, 7, and 10, respectively. The complete decolorization of MB occurred via a catalytic adsorption-oxidation-desorption mechanism. The GGB-MnO2 composite showed very good reusability and was stable after ten successive cycles with negligible losses of the decolorization efficiency

    Borax-Cross-Linked Guar Gum-Manganese Dioxide Composites for Oxidative Decolorization of Methylene Blue

    No full text
    Borax-cross-linked guar gum-manganese dioxide (GGB-MnO2) composite was synthesized using an environmentally friendly synthesis route and investigated for its efficiency of decolorizing methylene blue (MB) dye solution by an ultraviolet-visible (UV-Vis) spectrophotometric study. The GGB-MnO2 composite was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The composite (1.2 g/L) exhibited excellent oxidative decolorization of MB (30 mg/L, 50 mL) solution to over 99% in 6, 13, and 40 min at pH 4, 7, and 10, respectively. The complete decolorization of MB occurred via a catalytic adsorption-oxidation-desorption mechanism. The GGB-MnO2 composite showed very good reusability and was stable after ten successive cycles with negligible losses of the decolorization efficiency

    Development of alumina-mesoporous organosilica hybrid materials for carbon dioxide adsorption at 25 °C

    No full text
    Two series of alumina (Al O )-mesoporous organosilica (Al-MO) hybrid materials were synthesized using the co-condensation method in the presence of Pluronic 123 triblock copolymer. The first series of Al-MO samples was prepared using aluminum nitrate nanahydrate (Al-NN) and aluminum isopropoxide (Al-IP) as alumina precursors, and organosilanes with three different bridging groups, namely tris[3-(trimethoxysilyl)propyl]isocyanurate, 1,4-bis(triethoxysilyl)benzene, and bis(triethoxysilyl)ethane. The second series was obtained using the aforementioned precursors in the presence of an amine-containing 3-aminopropyltriethoxysilane to introduce, also, hanging groups. The Al-IP-derived mesostructures in the first series showed the well-developed porosity and high specific surface area, as compared to the corresponding mesostructures prepared in the second series with 3-aminopropyltriethoxysilane. The materials obtained from Al-NN alumina precursor possessed enlarged mesopores in the range of 3-17 nm, whereas the materials synthesized from Al-IP alumina precursor displayed relatively low pore widths in the range of 5-7 nm. The Al-IP-derived materials showed high CO uptakes, due to the enhanced surface area and microporosity in comparison to those observed for the samples of the second series with AP hanging groups. The Al-NN- and Al-IP-derived samples exhibited the CO uptakes in the range of 0.73-1.72 and 1.66-2.64 mmol/g at 1 atm pressure whereas, at the same pressure, the Al-NN and Al-IP-derived samples with 3-aminopropyl hanging groups showed the CO uptakes in the range of 0.72-1.51 and 1.70-2.33 mmol/g, respectively. These data illustrate that Al-MO hybrid materials are potential adsorbents for large-scale CO capture at 25 °C. 2 3 2 2 2

    Development of Alumina–Mesoporous Organosilica Hybrid Materials for Carbon Dioxide Adsorption at 25 °C

    No full text
    Two series of alumina (Al2O3)⁻mesoporous organosilica (Al⁻MO) hybrid materials were synthesized using the co-condensation method in the presence of Pluronic 123 triblock copolymer. The first series of Al⁻MO samples was prepared using aluminum nitrate nanahydrate (Al⁻NN) and aluminum isopropoxide (Al⁻IP) as alumina precursors, and organosilanes with three different bridging groups, namely tris[3-(trimethoxysilyl)propyl]isocyanurate, 1,4-bis(triethoxysilyl)benzene, and bis(triethoxysilyl)ethane. The second series was obtained using the aforementioned precursors in the presence of an amine-containing 3-aminopropyltriethoxysilane to introduce, also, hanging groups. The Al⁻IP-derived mesostructures in the first series showed the well-developed porosity and high specific surface area, as compared to the corresponding mesostructures prepared in the second series with 3-aminopropyltriethoxysilane. The materials obtained from Al⁻NN alumina precursor possessed enlarged mesopores in the range of 3⁻17 nm, whereas the materials synthesized from Al⁻IP alumina precursor displayed relatively low pore widths in the range of 5⁻7 nm. The Al⁻IP-derived materials showed high CO2 uptakes, due to the enhanced surface area and microporosity in comparison to those observed for the samples of the second series with AP hanging groups. The Al⁻NN- and Al⁻IP-derived samples exhibited the CO2 uptakes in the range of 0.73⁻1.72 and 1.66⁻2.64 mmol/g at 1 atm pressure whereas, at the same pressure, the Al⁻NN and Al⁻IP-derived samples with 3-aminopropyl hanging groups showed the CO2 uptakes in the range of 0.72⁻1.51 and 1.70⁻2.33 mmol/g, respectively. These data illustrate that Al⁻MO hybrid materials are potential adsorbents for large-scale CO2 capture at 25 °C

    Zirconium Containing Periodic Mesoporous Organosilica: The Effect of Zr on CO<sub>2</sub> Sorption at Ambient Conditions

    No full text
    Two series of zirconium-incorporated-periodic-mesoporous-organosilica (Zr–PMO) materials were successfully prepared, via a co-condensation strategy, in the presence of Pluronic P123 triblock copolymer. The first series of Zr–PMO was prepared using tris[3-(trimethoxysilyl)propyl]isocyanurate (ICS), tetraethylorthosilicate (TEOS), and zirconyl chloride octahydrate(ZrCO), denoted as Zr-I-PMO, where I refers to ICS. The second series was synthesized using bis(triethoxysilyl)benzene (BTEE), TEOS, and ZrCO as precursors, named as Zr-B-PMO, where B refers to BTEE. Zr–PMO samples exhibit type (IV) adsorption isotherms, with a distinct H2-hysteresis loop and well-developed structural parameters, such as pore volume, pore width, high surface area, and narrow pore-size distribution. Structural properties were studied by varying the Zr:Si ratio, adding TEOS at different time intervals, and changing the amount of block copolymer-Pluronic P123 used as well as the calcination temperature. Surface characteristics were tailored by precisely controlling the Zr:Si ratio, upon varying the amount of TEOS present in the mesostructures. The addition of TEOS at different synthesis stages, notably, enhanced the pore size and surface area of the resulting Zr-I-PMO samples more than the Zr-B-PMO samples. Changing the amount of block copolymer, also, played a significant role in altering the textural and morphological properties of the Zr-I-PMO and Zr-B-PMO samples. Optimizing the amount of Pluronic P123 added is crucial for tailoring the surface properties of Zr–PMOs. The prepared Zr–PMO samples were examined for use in CO2 sorption, at ambient temperature and pressure (25 °C, 1.2 bar pressure). Zr–PMO samples displayed a maximum CO2 uptake of 2.08 mmol/g, at 25 °C and 1.2 bar pressure. However, analogous zirconium samples, without any bridging groups, exhibited a significantly lower CO2 uptake, of 0.72 mmol/g, under the same conditions. The presence of isocyanurate- and benzene-bridging groups in Zr-I-PMO and Zr-B-PMO samples enhances the CO2 sorption. Interestingly, results illustrate that Zr–PMO materials show potential in capturing CO2, at ambient conditions

    Zirconium Containing Periodic Mesoporous Organosilica: The Effect of Zr on CO2 Sorption at Ambient Conditions

    No full text
    Two series of zirconium-incorporated-periodic-mesoporous-organosilica (Zr&ndash;PMO) materials were successfully prepared, via a co-condensation strategy, in the presence of Pluronic P123 triblock copolymer. The first series of Zr&ndash;PMO was prepared using tris[3-(trimethoxysilyl)propyl]isocyanurate (ICS), tetraethylorthosilicate (TEOS), and zirconyl chloride octahydrate(ZrCO), denoted as Zr-I-PMO, where I refers to ICS. The second series was synthesized using bis(triethoxysilyl)benzene (BTEE), TEOS, and ZrCO as precursors, named as Zr-B-PMO, where B refers to BTEE. Zr&ndash;PMO samples exhibit type (IV) adsorption isotherms, with a distinct H2-hysteresis loop and well-developed structural parameters, such as pore volume, pore width, high surface area, and narrow pore-size distribution. Structural properties were studied by varying the Zr:Si ratio, adding TEOS at different time intervals, and changing the amount of block copolymer-Pluronic P123 used as well as the calcination temperature. Surface characteristics were tailored by precisely controlling the Zr:Si ratio, upon varying the amount of TEOS present in the mesostructures. The addition of TEOS at different synthesis stages, notably, enhanced the pore size and surface area of the resulting Zr-I-PMO samples more than the Zr-B-PMO samples. Changing the amount of block copolymer, also, played a significant role in altering the textural and morphological properties of the Zr-I-PMO and Zr-B-PMO samples. Optimizing the amount of Pluronic P123 added is crucial for tailoring the surface properties of Zr&ndash;PMOs. The prepared Zr&ndash;PMO samples were examined for use in CO2 sorption, at ambient temperature and pressure (25 &deg;C, 1.2 bar pressure). Zr&ndash;PMO samples displayed a maximum CO2 uptake of 2.08 mmol/g, at 25 &deg;C and 1.2 bar pressure. However, analogous zirconium samples, without any bridging groups, exhibited a significantly lower CO2 uptake, of 0.72 mmol/g, under the same conditions. The presence of isocyanurate- and benzene-bridging groups in Zr-I-PMO and Zr-B-PMO samples enhances the CO2 sorption. Interestingly, results illustrate that Zr&ndash;PMO materials show potential in capturing CO2, at ambient conditions
    corecore