17 research outputs found

    Conductance and Shot Noise for Particles with Exclusion Statistics

    Full text link
    The first quantized Landauer approach to conductance and noise is generalized to particles obeying exclusion statistics. We derive an explicit formula for the crossover between the shot and thermal noise limits and argue that such a crossover can be used to determine experimentally whether charge carriers in FQHE devices obey exclusion statistics.Comment: 4 pages, revtex, 1 eps figure include

    Calculation of the Aharonov-Bohm wave function

    Full text link
    A calculation of the Aharonov-Bohm wave function is presented. The result is a series of confluent hypergeometric functions which is finite at the forward direction.Comment: 12 pages in LaTeX, and 3 PostScript figure

    Bosonic and fermionic single-particle states in the Haldane approach to statistics for identical particles

    Full text link
    We give two formulations of exclusion statistics (ES) using a variable number of bosonic or fermionic single-particle states which depend on the number of particles in the system. Associated bosonic and fermionic ES parameters are introduced and are discussed for FQHE quasiparticles, anyons in the lowest Landau level and for the Calogero-Sutherland model. In the latter case, only one family of solutions is emphasized to be sufficient to recover ES; appropriate families are specified for a number of formulations of the Calogero-Sutherland model. We extend the picture of variable number of single-particle states to generalized ideal gases with statistical interaction between particles of different momenta. Integral equations are derived which determine the momentum distribution for single-particle states and distribution of particles over the single-particle states in the thermal equilibrium.Comment: 6 pages, REVTE

    Haldane's Fractional Statistics and the Lowest Landau Level on a Torus

    Full text link
    The Lowest Landau Level on a torus is studied. The dimension of the many-body Hilbert space is obtained and is found to be different from the formula given by Haldane. Our result can be tested in numerical investigations of the low-energy spectrum of fractional quantum Hall states on a torus.Comment: 4 pages, Revtex. Small modifications. The modified version to appear in Phys. Rev. Lett., Feb., 199

    Equation of State for Exclusion Statistics in a Harmonic Well

    Full text link
    We consider the equations of state for systems of particles with exclusion statistics in a harmonic well. Paradygmatic examples are noninteracting particles obeying ideal fractional exclusion statistics placed in (i) a harmonic well on a line, and (ii) a harmonic well in the Lowest Landau Level (LLL) of an exterior magnetic field. We show their identity with (i) the Calogero model and (ii) anyons in the LLL of an exterior magnetic field and in a harmonic well.Comment: latex file, 11 page

    Finite-size anyons and perturbation theory

    Get PDF
    We address the problem of finite-size anyons, i.e., composites of charges and finite radius magnetic flux tubes. Making perturbative calculations in this problem meets certain difficulties reminiscent of those in the problem of pointlike anyons. We show how to circumvent these difficulties for anyons of arbitrary spin. The case of spin 1/2 is special because it allows for a direct application of perturbation theory, while for any other spin, a redefinition of the wave function is necessary. We apply the perturbative algorithm to the N-body problem, derive the first-order equation of state and discuss some examples.Comment: 18 pages (RevTex) + 4 PS figures (all included); a new section on equation of state adde

    On the virial coefficients of nonabelian anyons

    Get PDF
    We study a system of nonabelian anyons in the lowest Landau level of a strong magnetic field. Using diagrammatic techniques, we prove that the virial coefficients do not depend on the statistics parameter. This is true for all representations of all nonabelian groups for the statistics of the particles and relies solely on the fact that the effective statistical interaction is a traceless operator.Comment: 9 pages, 3 eps figure

    Thermodynamics of Relativistic Fermions with Chern-Simons Coupling

    Full text link
    We study the thermodynamics of the relativistic Quantum Field Theory of massive fermions in three space-time dimensions coupled to an Abelian Maxwell-Chern-Simons gauge field. We evaluate the specific heat at finite temperature and density and find that the variation with the statistical angle is consistent with the non-relativistic ideas on generalized statistics.Comment: 12 pages, REVTe

    Exclusion Statistics in a trapped two-dimensional Bose gas

    Full text link
    We study the statistical mechanics of a two-dimensional gas with a repulsive delta function interaction, using a mean field approximation. By a direct counting of states we establish that this model obeys exclusion statistics and is equivalent to an ideal exclusion statistics gas.Comment: 3 pages; minor changes in notation; typos correcte

    Quasi-particles in Fractional Quantum Hall Effect Edge Theories

    Get PDF
    We propose a quasi-particle formulation of effective edge theories for the fractional quantum Hall effect. For the edge of a Laughlin state with filling fraction \nu=1/m, our fundamental quasi-particles are edge electrons of charge -e and edge quasi-holes of charge +e/m. These quasi-particles satisfy exclusion statistics in the sense of Haldane. We exploit algebraic properties of edge electrons to derive a kinetic equation for charge transport between a \nu=1/m fractional quantum Hall edge and a normal metal. We also analyze alternative `Boltzmann' equations that are directly based on the exclusion statistics properties of edge quasi-particles. Generalizations to more general filling fractions (Jain series) are briefly discussed.Comment: 20 pages, 2 eps figures, revtex, references updated, Phys. Rev. B in pres
    corecore