5 research outputs found

    Effect of Interventions in WNT Signaling on Healing of Cardiac Injury: A Systematic Review

    No full text
    The wound healing that follows myocardial infarction is a complex process involving multiple mechanisms, such as inflammation, angiogenesis and fibrosis. In the last two decades, the involvement of WNT signaling has been extensively studied and effects on virtually all aspects of this wound healing have been reported. However, as often is the case in a newly emerging field, inconsistent and sometimes even contradictory findings have been reported. The aim of this systematic review is to provide a comprehensive overview of studies in which the effect of interventions in WNT signaling were investigated in in vivo models of cardiac injury. To this end, we used different search engines to perform a systematic search of the literature using the key words "WNT and myocardial and infarction". We categorized the interventions according to their place in the WNT signaling pathway (ligand, receptor, destruction complex or nuclear level). The most consistent improvements of the wound healing response were observed in studies in which the acylation of WNT proteins was inhibited by administering porcupine inhibitors, by inhibiting of the downstream glycogen synthase kinase-3β (GSK3β) and by intervening in the β-catenin-mediated gene transcription. Interestingly, in several of these studies, evidence was presented for activation of cardiomyocyte proliferation around the infarct area. These findings indicate that inhibition of WNT signaling can play a valuable role in the repair of cardiac injury, thereby improving cardiac function and preventing the development of heart failure

    Diurnal rhythms of serum and plasma cytokine profiles in healthy elderly individuals assessed using membrane based multiplexed immunoassay

    No full text
    Background: Recent clinical studies suggest that inflammatory mediators have huge potential in individualized therapy and in efficacy screening and can be utilized as biomarkers for a plethora of pathological conditions. The standard approach for detecting and measuring these inflammatory mediators is via blood samples. Nevertheless, there is no scientific report providing solid evidence on the most suitable blood compartment that will give the optimal inflammatory mediator measurement, or regarding the diurnal variation of circulating mediators. In this study, we present the biological variability of circulating cytokines and chemokines from healthy individuals (mean age 59 years) assessed by a novel membrane-based assay. Methods: Fifteen males and an equal number of females (all above 50 years) with no known inflammatory condition were selected. Through a planar method, named Proteome Profiler (TM), improved with fluorescence readout into a semi-quantitative multiplex assay, a screening of 36 inflammatory mediators was performed in serum and plasma of morning and afternoon blood withdrawals. Results: The multiplex analysis revealed that the physiological variability of several circulating inflammatory mediators was relatively small within a cohort of 30 healthy aging subjects. There was no substantial gender effect in the inflammatory mediator profile. On the contrary, most of the cytokine/chemokine values measured in the afternoon collection were found to be higher compared to the morning ones, particularly in plasma. Conclusions: In this study we provide evidence that circulating cytokine and chemokine levels of healthy individuals are elevated when blood is sampled in the afternoon compared to the morning, as influenced by the circulating cortisol levels. Furthermore, we report significant differences between cytokine/chemokine levels measured in serum and plasma. Our results provide essential information for future studies that will focus on examining circulating inflammatory mediator differences between healthy and diseased individuals

    Attenuation of post-infarction remodeling in rats by sustained myocardial growth hormone administration

    No full text
    Prevention of left ventricular remodeling is an important therapeutic target post-myocardial infarction. Experimentally, treatment with growth hormone (GH) is beneficial, but sustained local administration has not been thoroughly investigated. We studied 58 rats (322 ± 4 g). GH was administered via a biomaterial-scaffold, following in vitro and in vivo evaluation of degradation and drug-release curves. Treatment consisted of intra-myocardial injection of saline or alginate-hydrogel, with or without GH, 10 min after permanent coronary artery ligation. Echocardiographic and histologic remodeling-indices were examined 3 weeks post-ligation, followed by immunohistochemical evaluation of angiogenesis, collagen, macrophages and myofibroblasts. GH-release completed at 3 days and alginate-degradation at ∼7 days. Alginate + GH consistently improved left ventricular end-diastolic and end-systolic diameters, ventricular sphericity, wall tension index and infarct-thickness. Microvascular-density and myofibroblast-count in the infarct and peri-infarct areas were higher after alginate + GH. Macrophage-count and collagen-content did not differ between groups. Early, sustained GH-administration enhances angiogenesis and myofibroblast-activation and ameliorates post-infarction remodeling. © 2015 Taylor and Francis

    Empowering Systems Analysis for Solid Waste Management: Challenges, Trends, and Perspectives

    No full text
    corecore