13,093 research outputs found

    Sparse Covers for Sums of Indicators

    Get PDF
    For all n,ϵ>0n, \epsilon >0, we show that the set of Poisson Binomial distributions on nn variables admits a proper ϵ\epsilon-cover in total variation distance of size n2+n(1/ϵ)O(log2(1/ϵ))n^2+n \cdot (1/\epsilon)^{O(\log^2 (1/\epsilon))}, which can also be computed in polynomial time. We discuss the implications of our construction for approximation algorithms and the computation of approximate Nash equilibria in anonymous games.Comment: PTRF, to appea

    Alignment-free phylogenetic reconstruction: Sample complexity via a branching process analysis

    Get PDF
    We present an efficient phylogenetic reconstruction algorithm allowing insertions and deletions which provably achieves a sequence-length requirement (or sample complexity) growing polynomially in the number of taxa. Our algorithm is distance-based, that is, it relies on pairwise sequence comparisons. More importantly, our approach largely bypasses the difficult problem of multiple sequence alignment.Comment: Published in at http://dx.doi.org/10.1214/12-AAP852 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Learning Multi-item Auctions with (or without) Samples

    Full text link
    We provide algorithms that learn simple auctions whose revenue is approximately optimal in multi-item multi-bidder settings, for a wide range of valuations including unit-demand, additive, constrained additive, XOS, and subadditive. We obtain our learning results in two settings. The first is the commonly studied setting where sample access to the bidders' distributions over valuations is given, for both regular distributions and arbitrary distributions with bounded support. Our algorithms require polynomially many samples in the number of items and bidders. The second is a more general max-min learning setting that we introduce, where we are given "approximate distributions," and we seek to compute an auction whose revenue is approximately optimal simultaneously for all "true distributions" that are close to the given ones. These results are more general in that they imply the sample-based results, and are also applicable in settings where we have no sample access to the underlying distributions but have estimated them indirectly via market research or by observation of previously run, potentially non-truthful auctions. Our results hold for valuation distributions satisfying the standard (and necessary) independence-across-items property. They also generalize and improve upon recent works, which have provided algorithms that learn approximately optimal auctions in more restricted settings with additive, subadditive and unit-demand valuations using sample access to distributions. We generalize these results to the complete unit-demand, additive, and XOS setting, to i.i.d. subadditive bidders, and to the max-min setting. Our results are enabled by new uniform convergence bounds for hypotheses classes under product measures. Our bounds result in exponential savings in sample complexity compared to bounds derived by bounding the VC dimension, and are of independent interest.Comment: Appears in FOCS 201

    Discretized Multinomial Distributions and Nash Equilibria in Anonymous Games

    Full text link
    We show that there is a polynomial-time approximation scheme for computing Nash equilibria in anonymous games with any fixed number of strategies (a very broad and important class of games), extending the two-strategy result of Daskalakis and Papadimitriou 2007. The approximation guarantee follows from a probabilistic result of more general interest: The distribution of the sum of n independent unit vectors with values ranging over {e1, e2, ...,ek}, where ei is the unit vector along dimension i of the k-dimensional Euclidean space, can be approximated by the distribution of the sum of another set of independent unit vectors whose probabilities of obtaining each value are multiples of 1/z for some integer z, and so that the variational distance of the two distributions is at most eps, where eps is bounded by an inverse polynomial in z and a function of k, but with no dependence on n. Our probabilistic result specifies the construction of a surprisingly sparse eps-cover -- under the total variation distance -- of the set of distributions of sums of independent unit vectors, which is of interest on its own right.Comment: In the 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 200

    Approximate well-supported Nash equilibria in symmetric bimatrix games

    Full text link
    The ε\varepsilon-well-supported Nash equilibrium is a strong notion of approximation of a Nash equilibrium, where no player has an incentive greater than ε\varepsilon to deviate from any of the pure strategies that she uses in her mixed strategy. The smallest constant ε\varepsilon currently known for which there is a polynomial-time algorithm that computes an ε\varepsilon-well-supported Nash equilibrium in bimatrix games is slightly below 2/32/3. In this paper we study this problem for symmetric bimatrix games and we provide a polynomial-time algorithm that gives a (1/2+δ)(1/2+\delta)-well-supported Nash equilibrium, for an arbitrarily small positive constant δ\delta

    Reducing Revenue to Welfare Maximization: Approximation Algorithms and other Generalizations

    Get PDF
    It was recently shown in [http://arxiv.org/abs/1207.5518] that revenue optimization can be computationally efficiently reduced to welfare optimization in all multi-dimensional Bayesian auction problems with arbitrary (possibly combinatorial) feasibility constraints and independent additive bidders with arbitrary (possibly combinatorial) demand constraints. This reduction provides a poly-time solution to the optimal mechanism design problem in all auction settings where welfare optimization can be solved efficiently, but it is fragile to approximation and cannot provide solutions to settings where welfare maximization can only be tractably approximated. In this paper, we extend the reduction to accommodate approximation algorithms, providing an approximation preserving reduction from (truthful) revenue maximization to (not necessarily truthful) welfare maximization. The mechanisms output by our reduction choose allocations via black-box calls to welfare approximation on randomly selected inputs, thereby generalizing also our earlier structural results on optimal multi-dimensional mechanisms to approximately optimal mechanisms. Unlike [http://arxiv.org/abs/1207.5518], our results here are obtained through novel uses of the Ellipsoid algorithm and other optimization techniques over {\em non-convex regions}
    corecore