33 research outputs found

    Proceedings of the 4th Clinical Natural Language Processing Workshop

    Get PDF
    Acronym disambiguation (AD) is the process of identifying the correct expansion of the acronyms in text. AD is crucial in natural language understanding of scientific and medical documents due to the high prevalence of technical acronyms and the possible expansions. Given that natural language is often ambiguous with more than one meaning for words, identifying the correct expansion for acronyms requires learning of effective representations for words, phrases, acronyms, and abbreviations based on their context. In this paper, we proposed an approach to leverage the triplet networks and triplet loss which learns better representations of text through distance comparisons of embeddings. We tested both the triplet network-based method and the modified triplet network-based method with m networks on the AD dataset from the SDU@AAAI-21 AD task, CASI dataset, and MeDAL dataset. F scores of 87.31%, 70.67%, and 75.75% were achieved by the m network-based approach for SDU, CASI, and MeDAL datasets respectively indicating that triplet network-based methods have comparable performance but with only 12% of the number of parameters in the baseline method. This effective implementation is available at https://github.com/sandaruSen/m_networks under the MIT license.</p

    High Accuracy Protein Identification: Fusion of solid-state nanopore sensing and machine learning

    Full text link
    Proteins are arguably the most important class of biomarkers for health diagnostic purposes. Label-free solid-state nanopore sensing is a versatile technique for sensing and analysing biomolecules such as proteins at single-molecule level. While molecular-level information on size, shape, and charge of proteins can be assessed by nanopores, the identification of proteins with comparable sizes remains a challenge. Here, we present methods that combine solid-state nanopore sensing with machine learning to address this challenge. We assess the translocations of four similarly sized proteins using amplifiers with bandwidths (BWs) of 100 kHz (sampling rate=200 ksps) and 10 MHz (sampling rate=40 Msps), the highest bandwidth reported for protein sensing, using nanopores fabricated in <10 nm thick silicon nitride membranes. F-values of up to 65.9% and 83.2% (without clustering of the protein signals) were achieved with 100 kHz and 10 MHz BW instruments, respectively, for identification of the four proteins. The accuracy of protein identification was significantly improved by grouping the signals into several clusters depending on the event features, resulting in F-value and specificity reaching as high as 88.7% and 96.4%, respectively, for combinations of four proteins. The combined improvement in sensor signals through the use of high bandwidth instruments, advanced clustering, machine learning, and other advanced data analysis methods allows identification of proteins with high accuracy

    The Use of Event-Related Potentials and Machine Learning to Improve Diagnostic Testing and Prediction of Disease Progression in Parkinson's Disease

    Get PDF
    Current tests of disease status in Parkinson's disease suffer from high variability, limiting their ability to determine disease severity and prognosis. Event-related potentials, in conjunction with machine learning, may provide a more objective assessment. In this study, we will use event-related potentials to develop machine learning models, aiming to provide an objective way to assess disease status and predict disease progression in Parkinson's disease

    Integrating Multiple Inputs Into an Artificial Pancreas System: Narrative Literature Review

    Get PDF
    Background: Type 1 diabetes (T1D) is a chronic autoimmune disease in which a deficiency in insulin production impairs the glucose homeostasis of the body. Continuous subcutaneous infusion of insulin is a commonly used treatment method. Artificial pancreas systems (APS) use continuous glucose level monitoring and continuous subcutaneous infusion of insulin in a closed-loop mode incorporating a controller (or control algorithm). However, the operation of APS is challenging because of complexities arising during meals, exercise, stress, sleep, illnesses, glucose sensing and insulin action delays, and the cognitive burden. To overcome these challenges, options to augment APS through integration of additional inputs, creating multi-input APS (MAPS), are being investigated. Objective: The aim of this survey is to identify and analyze input data, control architectures, and validation methods of MAPS to better understand the complexities and current state of such systems. This is expected to be valuable in developing improved systems to enhance the quality of life of people with T1D. Methods: A literature survey was conducted using the Scopus, PubMed, and IEEE Xplore databases for the period January 1, 2005, to February 10, 2020. On the basis of the search criteria, 1092 articles were initially shortlisted, of which 11 (1.01%) were selected for an in-depth narrative analysis. In addition, 6 clinical studies associated with the selected studies were also analyzed. Results: Signals such as heart rate, accelerometer readings, energy expenditure, and galvanic skin response captured by wearable devices were the most frequently used additional inputs. The use of invasive (blood or other body fluid analytes) inputs such as lactate and adrenaline were also simulated. These inputs were incorporated to switch the mode of the controller through activity detection, directly incorporated for decision-making and for the development of intermediate modules for the controller. The validation of the MAPS was carried out through the use of simulators based on different physiological models and clinical trials. Conclusions: The integration of additional physiological signals with continuous glucose level monitoring has the potential to optimize glucose control in people with T1D through addressing the identified limitations of APS. Most of the identified additional inputs are related to wearable devices. The rapid growth in wearable technologies can be seen as a key motivator regarding MAPS.</p

    The role of machine learning in developing non-magnetic resonance imaging based biomarkers for multiple sclerosis: a systematic review

    Get PDF
    Background Multiple sclerosis (MS) is a neurological condition whose symptoms, severity, and progression over time vary enormously among individuals. Ideally, each person living with MS should be provided with an accurate prognosis at the time of diagnosis, precision in initial and subsequent treatment decisions, and improved timeliness in detecting the need to reassess treatment regimens. To manage these three components, discovering an accurate, objective measure of overall disease severity is essential. Machine learning (ML) algorithms can contribute to finding such a clinically useful biomarker of MS through their ability to search and analyze datasets about potential biomarkers at scale. Our aim was to conduct a systematic review to determine how, and in what way, ML has been applied to the study of MS biomarkers on data from sources other than magnetic resonance imaging. Methods Systematic searches through eight databases were conducted for literature published in 2014-2020 on MS and specified ML algorithms. Results Of the 1, 052 returned papers, 66 met the inclusion criteria. All included papers addressed developing classifiers for MS identification or measuring its progression, typically, using hold-out evaluation on subsets of fewer than 200 participants with MS. These classifiers focused on biomarkers of MS, ranging from those derived from omics and phenotypical data (34.5% clinical, 33.3% biological, 23.0% physiological, and 9.2% drug response). Algorithmic choices were dependent on both the amount of data available for supervised ML (91.5%; 49.2% classification and 42.3% regression) and the requirement to be able to justify the resulting decision-making principles in healthcare settings. Therefore, algorithms based on decision trees and support vector machines were commonly used, and the maximum average performance of 89.9% AUC was found in random forests comparing with other ML algorithms. Conclusions ML is applicable to determining how candidate biomarkers perform in the assessment of disease severity. However, applying ML research to develop decision aids to help clinicians optimize treatment strategies and analyze treatment responses in individual patients calls for creating appropriate data resources and shared experimental protocols. They should target proceeding from segregated classification of signals or natural language to both holistic analyses across data modalities and clinically-meaningful differentiation of disease.</p

    A Significance Assessment of Diabetes Diagnostic Biomarkers Using Machine Learning

    Get PDF
    Diabetes can be diagnosed by either Fasting Plasma Glucose or Hemoglobin A1c. The aim of our study was to explore the differences between the two criteria through the development of a machine learning based diabetes diagnostic algorithm and analysing the predictive contribution of each input biomarker. Our study concludes that fasting insulin is predictive of diabetes defined by FPG, but not by HbA1c. Besides, 28 other fasting blood biomarkers were not significant predictors of diabetes

    The Potential of Current Noninvasive Wearable Technology for the Monitoring of Physiological Signals in the Management of Type 1 Diabetes: Literature Survey

    Get PDF
    BackgroundMonitoring glucose and other parameters in persons with type 1 diabetes (T1D) can enhance acute glycemic management and the diagnosis of long-term complications of the disease. For most persons living with T1D, the determination of insulin delivery is based on a single measured parameter—glucose. To date, wearable sensors exist that enable the seamless, noninvasive, and low-cost monitoring of multiple physiological parameters.ObjectiveThe objective of this literature survey is to explore whether some of the physiological parameters that can be monitored with noninvasive, wearable sensors may be used to enhance T1D management.MethodsA list of physiological parameters, which can be monitored by using wearable sensors available in 2020, was compiled by a thorough review of the devices available in the market. A literature survey was performed using search terms related to T1D combined with the identified physiological parameters. The selected publications were restricted to human studies, which had at least their abstracts available. The PubMed and Scopus databases were interrogated. In total, 77 articles were retained and analyzed based on the following two axes: the reported relations between these parameters and T1D, which were found by comparing persons with T1D and healthy control participants, and the potential areas for T1D enhancement via the further analysis of the found relationships in studies working within T1D cohorts.ResultsOn the basis of our search methodology, 626 articles were returned, and after applying our exclusion criteria, 77 (12.3%) articles were retained. Physiological parameters with potential for monitoring by using noninvasive wearable devices in persons with T1D included those related to cardiac autonomic function, cardiorespiratory control balance and fitness, sudomotor function, and skin temperature. Cardiac autonomic function measures, particularly the indices of heart rate and heart rate variability, have been shown to be valuable in diagnosing and monitoring cardiac autonomic neuropathy and, potentially, predicting and detecting hypoglycemia. All identified physiological parameters were shown to be associated with some aspects of diabetes complications, such as retinopathy, neuropathy, and nephropathy, as well as macrovascular disease, with capacity for early risk prediction. However, although they can be monitored by available wearable sensors, most studies have yet to adopt them, as opposed to using more conventional devices.ConclusionsWearable sensors have the potential to augment T1D sensing with additional, informative biomarkers, which can be monitored noninvasively, seamlessly, and continuously. However, significant challenges associated with measurement accuracy, removal of noise and motion artifacts, and smart decision-making exist. Consequently, research should focus on harvesting the information hidden in the complex data generated by wearable sensors and on developing models and smart decision strategies to optimize the incorporation of these novel inputs into T1D interventions.</p

    An Actor-Critic based controller for glucose regulation in type 1 diabetes

    No full text
    A novel adaptive approach for glucose control in individuals with type 1 diabetes under sensor-augmented pump therapy is proposed. The controller, is based on Actor-Critic (AC) learning and is inspired by the principles of reinforcement learning and optimal control theory. The main characteristics of the proposed controller are (i) simultaneous adjustment of both the insulin basal rate and the bolus dose, (ii) initialization based on clinical procedures, and (iii) real-time personalization. The effectiveness of the proposed algorithm in terms of glycemic control has been investigated in silico in adults, adolescents and children under open-loop and closed-loop approaches, using announced meals with uncertainties in the order of ±25% in the estimation of carbohydrates. The results show that glucose regulation is efficient in all three groups of patients, even with uncertainties in the level of carbohydrates in the meal. The percentages in the A+B zones of the Control Variability Grid Analysis (CVGA) were 100% for adults, and 93% for both adolescents and children. The AC based controller seems to be a promising approach for the automatic adjustment of insulin infusion in order to improve glycemic control. After optimization of the algorithm, the controller will be tested in a clinical trial

    Real-time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients

    No full text
    Prediction of glycemic profile is an important task for both early recognition of hypoglycemia and enhancement of the control algorithms for optimization of insulin infusion rate. Adaptive models for glucose prediction and recognition of hypoglycemia based on statistical and artificial intelligence techniques are presented

    Evaluating Effects of Resting-State Electroencephalography Data Pre-Processing on a Machine Learning Task for Parkinson's Disease

    No full text
    Resting-state electroencephalography (RSEEG) is a method under consideration as a potential biomarker that could support early and accurate diagnosis of Parkinson's disease (PD). RSEEG data is often contaminated by signals arising from other electrophysiological sources and the environment, necessitating pre-processing of the data prior to applying machine learning methods for classification. Importantly, using differing degrees of pre-processing will lead to different classification results. This study aimed to examine this by evaluating the difference in experimental results when using re-referenced data, data that had undergone filtering and artefact rejection, and data without muscle artefact. The results demonstrated that, using a Random Forest Classifier for feature selection and a Support Vector Machine for disease classification, different levels of pre-processing led to markedly different classification results. In particular, the presence of muscle artefact was associated with inflated classification accuracy, emphasising the importance of its removal as part of pre-processing
    corecore