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Abstract

Background: Type 1 diabetes (T1D) is a chronic autoimmune disease in which a deficiency in insulin production impairs the
glucose homeostasis of the body. Continuous subcutaneous infusion of insulin is a commonly used treatment method. Artificial
pancreas systems (APS) use continuous glucose level monitoring and continuous subcutaneous infusion of insulin in a closed-loop
mode incorporating a controller (or control algorithm). However, the operation of APS is challenging because of complexities
arising during meals, exercise, stress, sleep, illnesses, glucose sensing and insulin action delays, and the cognitive burden. To
overcome these challenges, options to augment APS through integration of additional inputs, creating multi-input APS (MAPS),
are being investigated.

Objective: The aim of this survey is to identify and analyze input data, control architectures, and validation methods of MAPS
to better understand the complexities and current state of such systems. This is expected to be valuable in developing improved
systems to enhance the quality of life of people with T1D.

Methods: A literature survey was conducted using the Scopus, PubMed, and IEEE Xplore databases for the period January 1,
2005, to February 10, 2020. On the basis of the search criteria, 1092 articles were initially shortlisted, of which 11 (1.01%) were
selected for an in-depth narrative analysis. In addition, 6 clinical studies associated with the selected studies were also analyzed.

Results: Signals such as heart rate, accelerometer readings, energy expenditure, and galvanic skin response captured by wearable
devices were the most frequently used additional inputs. The use of invasive (blood or other body fluid analytes) inputs such as
lactate and adrenaline were also simulated. These inputs were incorporated to switch the mode of the controller through activity
detection, directly incorporated for decision-making and for the development of intermediate modules for the controller. The
validation of the MAPS was carried out through the use of simulators based on different physiological models and clinical trials.

Conclusions: The integration of additional physiological signals with continuous glucose level monitoring has the potential to
optimize glucose control in people with T1D through addressing the identified limitations of APS. Most of the identified additional
inputs are related to wearable devices. The rapid growth in wearable technologies can be seen as a key motivator regarding MAPS.
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However, it is important to further evaluate the practical complexities and psychosocial aspects associated with such systems in
real life.

(JMIR Diabetes 2022;7(1):e28861) doi: 10.2196/28861
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Introduction

Background
In health, pancreatic islet β-cells respond to metabolic and
neurohormonal signals to secrete insulin into the portal vein at
finely controlled variable rates to ensure that blood glucose
level and overall metabolic homeostasis are maintained.
Diabetes is a metabolic disease characterized by elevated blood
glucose concentrations as a consequence of an absolute
deficiency of insulin secretion or inadequate insulin secretion
to compensate for ineffective insulin action. Type 1 diabetes
(T1D) is caused by the autoimmune destruction of the islet
β-cells and results in absolute insulin deficiency [1]. An inability
to match insulin delivery with an individual’s changing insulin
requirements results in either hypoglycemia (low blood glucose
level) or hyperglycemia (high blood glucose level).
Hypoglycemia, if severe, may result in loss of consciousness,
seizures, or even death. Long-term exposure to hyperglycemia
results in complications such as blindness, limb amputations,
and cardiovascular disease. Maintaining blood glucose levels
in a healthy range is essential for the avoidance of severe short-
and long-term complications of diabetes [1].

The discovery and use of exogenous insulin administration since
1921 as a therapeutic agent has been life saving for people living
with T1D. More recently, pancreas and islet cell transplants
have also provided a solution for T1D, although organ donation
shortage, the risks of surgery, and the need for
immunosuppression are limiting factors [2]. As a result, there
is a continued reliance on the subcutaneous administration of
exogenous insulin to treat this condition. There have been
continuous advancements in insulin preparations [3], insulin
delivery [4], and blood glucose level monitoring [5]. Until recent
years, best practice treatment of T1D, as was established in the
Diabetes Control and Complications Trial [6], involved frequent
self-monitoring of blood glucose level through using finger
pricks to access capillary blood and multiple daily injections of
short- and long-acting insulins. Information from the
self-monitoring of blood glucose level as well as the

carbohydrate content of meals and planned exercise informed
the titration of insulin doses. The advent of rapid-acting insulin
analogs, continuous glucose monitoring (CGM), continuous
subcutaneous infusion of insulin (CSII), shortcomings in manual
insulin-dose determination, and the significant psychological
burden [7] have motivated the development of the artificial
pancreas (AP; or AP systems [APS]) [8].

Although the concept of the AP has been around for >40 years,
with the Biostator [9] identified as the first closed-loop glucose
controlling system or AP [10], it is only in the last few years
that the use of the AP has become a clinical reality. The first
Food and Drug Administration (FDA)–approved commercial
AP was released in 2016 in the United States, with a second
system more recently approved [11,12]. The basic components
of the APS are a sensor measuring subcutaneous interstitial
fluid glucose on a near-continuous basis, a pump infusing
rapid-acting insulin into the subcutaneous tissue, and a control
algorithm (also known as the controller) that uses glucose
measurements as the main input to calculate and operate the
required rate of insulin infusion as the output (Figure 1).
Proportional integral derivative control, model predictive control
(MPC), fuzzy logic [13-15], adaptive control [16,17], and
reinforcement learning [18] have been used in the recent past
for controller development. The FDA has categorized the AP
as a class III medical device, which is considered high risk.
Hence, an investigation device exemption is required before
conducting a clinical trial [19]. This requires initial testing of
the proof of concept through animal trials, which is a
time-consuming and costly exercise. A critical step toward AP
advancement was the development of physiological models and
simulators, which enabled the tuning and testing of different
control algorithms in silico before conducting clinical studies,
ensuring safety. The minimal model of glucose kinetics [20],
the Sorenson model [21], the Hovorka model [22], the
UVA/PADOVA simulator [23], the mGIPsim simulator [24],
and the in silico patient population by Resalat et al [25] are
some of the widely used models. The UVA/PADOVA simulator
is currently the only FDA-approved simulator.
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Figure 1. The basic system architecture of the artificial pancreas.

The major challenges with respect to the APS control algorithms
relate to (1) delays in the onset and offset of insulin action
because of delays of its absorption from subcutaneous depots
(from CSII delivery) into the blood and (2) a time lag between
glucose levels measured in subcutaneous interstitial fluid and
blood glucose levels measured by currently available CGM
devices. These limitations of APS imposed by the
pharmacokinetics of subcutaneously delivered insulin and
measured glucose levels are most evident in situations in which
blood glucose levels and insulin requirements change rapidly
and unexpectedly. These include meals, exercise, stressful
events, and in response to acute illnesses. The current APS are
hybrid closed-loop systems that require user input regarding
meals and exercise; hence, similar to previous treatment
methods, there remains a cognitive burden, affecting the quality
of life of people with T1D [26]. Despite these limitations,
systematic reviews and meta-analyses have verified that APS
have shown better performance than conventional pump therapy
[27]. However, there is still significant room for improvement.

Approaches used for improving APS functionality include
advances in CGM accuracy and reliability; the development of
faster-acting insulin analogs; and dual hormone infusion systems
[28] in which glucagon, which can prevent hypoglycemia, as
well as insulin can be delivered independently through the use
of a controller. Complications of T1D can be related to meals,
exercise, stress, and illness, all of which may affect glucose
homeostasis. Current systems are unable to recognize these
events and rely almost entirely upon inputs based on glucose
level measurements and a record of the amount of insulin
delivered. Inputs in addition to glucose level measurements may
overcome some of the limitations of the current-generation APS.
There has been recent focus on integrating additional external
inputs captured from wearable devices and invasive sensors as
part of experimental multi-input APS (MAPS). The addition of
various signal inputs (eg, lactate and heart rate [HR]) is expected
to provide more information and support the automatic
identification of activities such as meals, exercise, sleep, stress,
and other biological variations that affect the glucose profile
[29]. The early detection of these activities would also help to
counter limitations arising from CGM sensor delays [30]. This
is also expected to reduce cognitive burden through lessening
user interaction, leading to a better quality of life [31]. The rapid
development of wearable sensor technologies can be identified

as a strong motivator with respect to MAPS; however, it is
important to analyze the potential improvement and additional
device burden arising through the use of these systems.

Objectives
The main objective of this survey is to identify and review the
MAPS that have been proposed to date in terms of used inputs,
control architectures, and validation methods. To develop better
systems, it is critical to understand the current state of MAPS
and identify associated complexities. We aim to achieve this
through conducting an in-depth analysis of previous related
studies. The current pace of APS development has been slow,
prompting movements such as #WeAreNotWaiting by people
with T1D, which focuses on do-it-yourself APS [32]. This
synthesis may accelerate work on developing improved MAPS.
This survey identified a variety of additional signals that have
been integrated into experimental APS. Most of the reviewed
publications focused upon noninvasive inputs from wearable
devices. These additional input signals have been integrated
into different architectures to augment the controllers, in
particular (1) for activity detection and switching of controller
modes, (2) as direct inputs to the controller for decision-making,
and (3) for the development of intermediate modules of the
controller (eg, hypoglycemia prediction or meal detection). A
variety of physiological models, simulation environments, and
clinical studies have been used for validation of the results. A
detailed analysis is presented in later sections.

Methods

Overview
The survey was conducted by 3 independent reviewers (CH,
ED, and HS) with research backgrounds in engineering, signal
processing, machine learning, and health informatics, supported
by a research librarian. The first reviewer conducted a systematic
literature search and shortlisted studies through title and abstract
screening. The second and third reviewers provided input to
select the final studies for the survey and conducted the analysis.
Throughout the reviewing process the researchers obtained
valuable clinical expertise from 2 endocrinologists actively
involved in T1D management and lived experience insights
from young people with T1D within the Health Experience
Team of the Our Health in Our Hands [33] strategic initiative
of the Australian National University.
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The literature survey was conducted according to the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) framework [34]. We searched Scopus and IEEE
Xplore (to capture engineering studies on APS development,
including multiple-input scenarios) and PubMed (to capture
APS clinical studies conducted corresponding to the identified
engineering approaches) databases between January 1, 2005,
and February 10, 2020. The survey focused on analyzing and

summarizing the different input sources, in addition to glucose
level measurements, integrated into MAPS; control algorithms;
architectures; and the validation methodologies used. The
clinical transition of the identified studies was also considered
to obtain a complete picture of the current state of progress of
MAPS developments. The study selection process was carried
out in 4 steps (Figure 2).

Figure 2. Study selection and identification flowchart. MAPS: multi-input artificial pancreas systems.

Identification Phase
A broad search query (Table 1) was developed to identify all
papers related to control of the APS. The search query was not
restricted further to ensure that all studies related to MAPS were
captured. For the Scopus database, the search was restricted to
articles and conference proceedings related to the subject areas
of engineering, computer science, mathematics, decision

sciences, and multidisciplinary specializations. The subject area
restriction was not possible in PubMed; thus, the query was
adjusted to exclude review articles and only include research
related to humans. No additional filtering was carried out in the
IEEE Xplore database because of it specific focus on computer
science and electrical engineering. Additional records were
identified through following the references in the selected
studies (Multimedia Appendix 1).
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Table 1. Search queries resulting in the identified studies (N=1388).

Studies, n (%)Search strategyDatabase

668 (48.12)(((close* AND loop) AND (diabet* OR t1d)) OR artificial W/2pancreas) AND (control*); (filter: subject area
and article type)

Scopus

393 (28.31)(((close* AND loop) AND (diabet* OR t1d)) OR artificial W/2pancreas) AND (control*) NOT (review*); (filter:
humans)

PubMed

327 (23.56)(((close* AND loop) AND (diabet* OR t1d)) OR artificial pancreas) AND control*IEEE Xplore

Screening Phase
Papers identified from the database search and other resources
were first analyzed to remove duplicates. The titles and abstracts
of the remaining papers were screened, where papers focusing
on animal studies; CGM sensor development and errors analysis;
insulin pumps; other aspects of the APS (eg, safety, user
experience, and psychosocial aspects); physiological modeling;
studies related to the chemical, biological, and medical aspects
of APS design; studies focusing on developing submodules for
the AP (eg, glucose-level estimation and meal detection); studies
without additional input signals; and other irrelevant studies
were excluded.

Eligibility Phase
The remaining full papers were analyzed and included in the
study if the following selection criteria were met: (1) a control
algorithm or architecture is present, (2) external additional inputs
are used for the controller design (ie, in addition to CGM
measurements, and the additional inputs are not control inputs,
such as the coinfusion of glucagon), and (3) a validation is
conducted in silico or in vivo (in humans). These criteria were
formulated to encompass the 3 main verticals of the survey to
understand and summarize the use of additional wearables in
AP design, AP development technologies, and validation
methodologies.

Inclusion Phase
Finally, the selected studies (N=17) were categorized into two
groups: studies that introduce different unique MAPS (11/17,
65%) and their associated clinical studies (6/17, 35%). It is
important to note that some of the studies in the first category
also included clinical trial results (3/11, 27%). This separation
was required to avoid the duplication of similar APS and ensure

the overall analysis of the identified technical criteria of the
unique MAPS studies. The main studies were analyzed based
on the additional inputs used, APS controller design, and
validation methodologies. The clinical studies were analyzed
to discuss the feasibility of MAPS.

Quality Assessment
A quality assessment of the selected 17 studies were carried out
using the Critical Appraisal Skills Programme Tool [35]
(Multimedia Appendix 2 [36-52]). It is important to note that
the main issues highlighted by the assessment were (1) difficulty
in ascertaining the risk of bias in data collection or simulation
data and (2) the failure of the study reports to provide sufficient
information regarding ethical approvals.

Results

Results Overview
The analysis first identified the research groups working in the
area of MAPS based on the selected studies and their clinical
trials. Next, the shortlisted studies were evaluated based on the
following main dimensions: (1) the types of additional signals
used and their impact on glucose regulation, (2) the control
algorithms and architectures, and (3) the validation
methodologies.

Research Groups Focusing on MAPS
The Illinois Institute of Technology and Oregon Health &
Science University were identified as the 2 main research groups
developing MAPS, having produced 45% (5/11) of the main
studies and 83% (5/6) of the associated clinical studies (Table
2). The diversity of researchers from different domains authoring
the selected studies highlights the importance of
multidisciplinary teams in APS development.

JMIR Diabetes 2022 | vol. 7 | iss. 1 | e28861 | p. 5https://diabetes.jmir.org/2022/1/e28861
(page number not for citation purposes)

Hettiarachchi et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Breakdown of main research groups focusing on developing multi-input artificial pancreas systems (N=17)a.

Associated clinical studies
(n=6), n (%)

Selected main studies
(n=11), n (%)

Research group

3 (50) [39-41]3 (27) [36-38]• Illinois Institute of Technology, United States
• Department of Chemical and Biological Engineering
• Department of Biomedical Engineering
• Department of Biobehavioral Health Science
• Department of Pediatrics
• Department of Electrical and Computer Engineering

• University of Illinois Chicago, United States
• College of Nursing

• University of Chicago, United States
• Biological Sciences Division
• Department of Pediatrics and Medicine, Kovler Diabetes Center

• Michigan State University, United States
• Sparrow Medical Group

2 (33) [44,45]2 (18) [42,43]• Oregon Health & Science University, United States
• Department of Biomedical Engineering
• Department of Medicine
• Division of Endocrinology, Harold Schnitzer Diabetes Health Center

• Oregon Clinical and Translational Research Institute Biostatistics & Design Program
• Department of Medicine, Division of Health Promotion and Sports Medicine

—b2 (18) [46,47]• Instituto Potosino de Investigación Científica y Tecnológica, Mexico
• Division de Matematicas Alicadas
• Biodinamica y Sistemas Alineales

—2 (18) [48,49]• National University of Sciences & Technology, Pakistan
• Department of Electrical Engineering

• Northwestern Polytechnical University, China
• School of Automation

• Center for Emerging Sciences Engineering and Technology, Pakistan
• Department of Electronics Engineering

—1 (9) [50]• Stanford University, United States
• Division of Pediatric Endocrinology

• Rensselaer Polytechnic Institute, United States
• Department of Chemical and Biological Engineering

1 (17) [52]1 (9) [51]• University of Virginia, Charlottesville, Virginia, United States
• Center for Diabetes Technology, Division of Pediatric Endocrinology, Depart-

ment of Pediatrics
• Division of Endocrinology, Department of Medicine

• Virginia Commonwealth University
• Division of Pediatric Endocrinology, Department of Pediatrics

aThe selected 11 studies and their corresponding 6 clinical trials are categorized according to their main institutions.
bNo associated clinical studies identified through literature search.
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Noninvasive Inputs
The types of additional inputs integrated or proposed to be
integrated into APS that were identified can be categorized as
(1) noninvasive inputs captured through wearable devices (most
of them) and (2) invasive inputs of substances measured in body
fluids. Most (9/11, 82%) of the selected studies focused on using
noninvasive wearable input for MAPS development.
Electrocardiogram (ECG), HR, accelerometers, skin resistance,
energy expenditure (EE), and galvanic skin response (GSR)
were identified as the noninvasive sensory inputs, and clinical
studies were carried out for all these additional inputs, except
for ECG for which simulations were conducted. However, it
should be noted that wearable devices capable of capturing ECG
measurements are currently available but might not have been
available at the time the respective studies were carried out.
Readers are directed to the study by Iqbal et al [53], which
summarizes wearable devices in health care.

The additional inputs were introduced to the APS to address
the previously explained limitations such as meals, exercise,
stress detection, and illnesses and to counter the delays
associated with glucose sensing and insulin action. It is
important to analyze what additional signals have been used to
counter these limitations and how they have been used in the
APS design. A large portion of the studies (7/11, 64%) focused
on exercise detection. They mainly used HR, accelerometer,
and EE (also referred to as metabolic equivalent [MET]) for
exercise detection.

Turksoy et al [36,37] and Hajizadeh et al [38] used the readily
available EE data from wearables, whereas Jacobs et al [42]
and Resalat et al [43] used a regression model introduced by
Zakeri et al [54] to convert HR and accelerometer data to
calculate MET. Stenerson et al [50] used HR and accelerometer
data, and DeBoer et al [51] used HR data to identify exercise
through predefined threshold values. It can be identified that
exercise detection was the main focus of previous studies
because of its practical importance.

Hypoglycemia prediction, using additional physiological signals,
was the next popular approach to MAPS design. Predicting
hypoglycemia in advance helps mitigate the glucose-sensing
delays. Khan et al [48] and Qaisar et al [49] used HR, ECG (QT
interval), and skin resistance for hypoglycemia detection. They
identified the QT interval as the most prominent input and skin
resistance as the least important input in hypoglycemia
prediction. Turksoy et al [55] used EE and GSR to develop a
module for hypoglycemia prediction. Stress detection was
identified as another important aspect for MAPS design, where
Turksoy et al [36,37] focused on using GSR signals. Patek [31],
in his review, discusses a variety of other potential examples

of how wearable sensory inputs can be used for MAPS design.
They include the use of step counts, GPS,
electroencephalography, chewing detection, finger and arm
motion detection, and sleep detection data.

Managing meal effects is vital in APS development and at
present it is challenging because of the heavy user burden,
inaccuracies in carbohydrate counting, and forgetting to bolus.
Turksoy et al [56,57] developed meal detection and carbohydrate
estimation algorithms based on CGM measurements. However,
in this survey, our focus was specifically on the use of MAPS
design. Additional signals explored in the analyzed studies were
not specifically used to improve glucose regulation related to
meals.

Invasive Inputs
People with T1D who choose not to conduct multiple daily
blood glucose level tests and use multiple daily injections are
currently compelled to use minimally invasive CGM and CSII
devices. This requires users to take necessary steps to regularly
change the sensors [26,58-61]. Hence, an additional invasive
sensor might be identified as practically burdensome. However,
there exists the possibility of integrating additional sensors in
currently used devices such as CGM and CSII to avoid
additional user burden. Previous studies have identified
relationships between invasive inputs and T1D (eg, ketone
sensors to identify diabetic ketoacidosis [62]). Although rich
relationships exist, progress is stunted because of the lack of
sensors for carrying out continuous measurements. At present,
real-time interstitial insulin sensors and ketone sensors are being
developed [63].

Quiroz and Femat [46] and Quiroz et al [47] identified lactate
and adrenaline as 2 important invasive inputs that were directly
integrated as inputs in the controller. They are used in detecting
exercise and hypoglycemia, respectively, which are important
aspects in APS design to address the limitations identified
previously. The studies described did not focus on clinical trials
based on these additional invasive inputs, which again highlights
the limited research conducted in the area because of the
bottleneck in sensor development.

MAPS Architectures
The additional inputs identified in the previous section have
been integrated into different architectures to augment the
controllers (Table 3). They have been (1) used to switch
controller modes through activity detection, (2) directly
incorporated in the controller for decision-making, and (3) used
for the development of intermediate modules for the controller
(eg, hypoglycemia and meal detection).
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Table 3. Summary of selected studies. Additional summarization is provided in Multimedia Appendix 3 [38,42,43,46-50].

ValidationArchitectureControl algorithmAdditional inputsStudy

MATLAB simulationAdditional inputs directly integratedH∞ controllerLactate and adrenalineQuiroz et al [46]

MATLAB simulationAdditional inputs directly integratedH∞ controllerLactate and adrenalineQuiroz et al [47]

MATLAB simulationFuzzy fusion controller to fuse the additional
input to prompt glucagon infusion (dual hor-
mone)

PIDc controllerECGa, HRb, and skin resis-
tance

Khan et al [48]

MATLAB simulationFuzzy fusion controller to fuse the additional
input to prompt glucagon infusion (dual hor-
mone)

Neural network pre-
dictive controller

ECG, HR, and skin resis-
tance

Qaisar et al [49]

Simulator (not specified)Additional inputs used to switch between modesPLGSd algorithmHR and accelerometerStenerson et al
[50]

Clinical studyAdditional inputs used to switch between modes
(only basal rate is controlled)

Control to rangeHRDeBoer et al [51]

Simulation; clinical studyAdditional inputs used to switch the controller
to a different mode (dual hormone)

FMPDf controllerEEe (HR and accelerometer
used to calculate)

Jacobs et al [42]

SimulationInputs used to calculate MET, which is directly
used by the controller for decision-making; meal
data also provided to the controller

Adaptive run-to-run

MPCh
METg (HR and accelerome-
ter)

Resalat et al [43]

Clinical studyAdditional inputs integrated directly; ARMAXk,
recursive least squares, and constrained optimiza-
tion used

GPCjEE and GSRiTurksoy et al [36]

Clinical studyAdditional inputs integrated directly; time-

varying forgetting factor for WRLSl algorithm
and trajectory tracking

GPCEE and GSRTurksoy et al [37]

SimulationAdditional inputs integrated directly into the
controller. Recursive subspace identification

techniques, PICm, and meal estimates also used
as inputs to the controller

Adaptive MPCEE (MET)Hajizadeh et al
[38]

aECG: electrocardiogram.
bHR: heart rate.
cPID: proportional integral derivative.
dPLGS: predictive low-glucose suspend.
eEE: energy expenditure.
fFMPD: fading memory proportional derivative.
gMET: metabolic equivalent.
hMPC: model predictive control.
iGSR: galvanic skin response.
jGPC: generalized predictive control.
kARMAX: autoregressive moving average with external input.
lWRLS: weighted recursive least squares.
mPIC: plasma insulin concentration.

Stenerson et al [50], DeBoer et al [51], and Jacobs et al [42]
focused on switching the mode of the controller based on
detected activity. HR and accelerometer input were used in this
approach, where the controller mode was changed through
adjusting parameters and thresholds within the controller.
Stenerson et al [50] suspended their predictive low-glucose
suspend algorithm, and DeBoer et al [51] adjusted the
hypoglycemia risk threshold in their control-to-range controller
when exercise was detected. Jacobs et al [42] used a fading
memory proportional derivative dual hormone controller that,
upon the detection of exercise, carried out dosing of insulin and
glucagon based on a set of static rules. This approach only

focused on activity detection. However, the identified additional
inputs may contain valuable information related to the glucose
regulation process. Hence, studies have focused on direct
integration of the additional inputs for decision-making.

Quiroz and Femat [46], Quiroz et al [47], Resalat et al [43],
Turksoy et al [36,37], and Hajizadeh et al [38] focused on direct
integration of additional inputs in the controller design. Quiroz
and Femat [46] and Quiroz et al [47] directly integrated lactate
and adrenaline input into their H∞ control algorithm. Resalat et
al [43] developed a run-to-run MPC that used continuous MET
data for exercise detection. Turksoy et al [36] integrated EE and
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GSR into a generalized predictive controller by developing time
series models using autoregressive moving average with external
input, recursive least squares, and constrained optimization
techniques. They improved on their work by introducing a
time-varying forgetting factor for the weighted recursive least
squares algorithm and focusing on trajectory tracking [37].
Hajizadeh et al [38] used recursive subspace identification
techniques to develop an adaptive MPC controller incorporating
MET input. The continuously integrated inputs such as EE and
GSR provided valuable and timely insights regarding the glucose
regulatory process, which is valuable.

Designing submodules for the APS has also been widely
explored, where the focus has been on using the input to enhance
insulin and glucagon infusion and to design safety mechanisms
for the APS. These submodules were mainly linked to identified
limitations such as meal detection, activity detection, and
hypoglycemia detection. Khan et al [48] and Qaisar et al [49]
developed a hypoglycemia-detection module using HR, ECG
(QT Interval), and skin resistance. In addition to the main
controller focusing on insulin infusion, a fuzzy logic fusion
controller was introduced to infuse glucagon based on the
identified signals during a hypoglycemia event. Turksoy et al
[41] performed a clinical trial where hypoglycemia early alarm
[55], meal detection [56,64], hypoglycemia prediction, and
carbohydrate recommendation [57] modules were integrated
into the final APS design. Hajizadeh at al [38] focused on
plasma insulin concentration estimation and meal effect
estimation modules in their research. Resalat et al [43] proposed

and evaluated an insulin sensitivity adaptation algorithm and
an adaptive-learning postprandial hypoglycemia prevention
algorithm. However, it is important to note that some of these
submodules only used existing CGM measurements. Different
safety modules have also been introduced, where Turksoy et al
[36] and DeBoer et al [51] focused on hypoglycemia and
hyperglycemia safety, respectively, through insulin-on-board
estimates. The development of submodules enhances the
interpretability of the APS operation, which is essential in
safety-critical applications. Most of the studies have used
submodules in their controllers, both with switching the
controller mode through activity detection and when additional
inputs are directly integrated. Hence, designing submodules
using additional input targeting the identified limitations is
beneficial in APS development.

Validation Methodologies
The designed APS have been validated through simulations and
clinical studies (Tables 3 and 4). A variety of physiological
models and tools have been used for simulations and different
protocols used for clinical trials. The AP is classified as a
high-risk medical device by the FDA, which requires proper
simulation and testing before conducting clinical trials.
However, it is important to note that an FDA-approved simulator
is currently unavailable for testing MAPS. In all, 2 groups have
focused on developing their own multiple-input simulators
[24,25], which would be beneficial for the progress of MAPS
development.
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Table 4. Comparison of clinical trial results.

ResultsTrial and controller settingAuthor

Breton et al [52] •• Time in euglycemiab for APc with HR and without HR
overall 81% vs 75%, exercise 91% vs 85%, and overnight
89% vs 84%

12 adults, randomized crossover trial, 24-hour closed-loop
experiments each with exercise

• Exercise detection using HRa

•• Using HR resulted in fewer hypoglycemic events during
exercise (0 vs 2)

Meal bolus manually calculated

DeBoer et al [51] •• Time in euglycemia for AP with HR and without HR
overall 77% vs 74%, exercise 96% vs 87%, and overnight
92% vs 84%

18 adolescents, randomized crossover trial, 24-hour closed-
loop experiments each with exercise

• Exercise detection using HR
• Small reduction in hypoglycemic events (0.39 HR-in-

formed AP vs 0.50 without HR)
• Meal bolus manually calculated

Jacobs et al [44] •• Time in euglycemia with exercise detection 67%, without

exercise detection 72%, and SAPd 68%

21 adults, randomized crossover trial, 22-hour experiments
each with exercise

• Exercise-detection algorithm triggered manually • Time in hypoglycemia (<3.9 mmol/L) 0.3%, 3.1%, and
0.8%, respectively

• Time in hyperglycemia (<10 mmol/L) 32%, 25%, and
31%, respectively

Castle et al [45] •• Time in euglycemia overall SH 74.3%, DH 72%, PLGSg

65.2%, and current care 63.1%

20 adults, randomized crossover trial, 4-day experiments
each with exercise

• Exercise-detection algorithm triggered using wearable

sensor in SHe and DHf controllers
• Time in hypoglycemia 2.8%, 1.3%, 2%, and 3.1%, respec-

tively

Turksoy et al
[36,39]

•• Time in euglycemia 62% (overnight 75.3%, exercise 55%,
and glycemic closed loop 56.1%)

3 young adults, seven 32- or 60-hour closed-loop experi-
ments with exercise

• Additional signals integrated continuously

Turksoy et al [37] •• Time in euglycemia 46.5%3 young adults, 70-hour closed-loop experiments with ex-
ercise

• Additional signals integrated continuously

Turksoy et al [40] •• Time in euglycemia 58%9 young adults, 2-day closed-loop experiments with exer-
cise

• Additional signals integrated continuously

Turksoy et al [41] •• Time in euglycemia 69.9% for exercise and recovery peri-
ods and 76.75% overall performance

10 young adults, eighteen 60-hour closed-loop experiments
with exercise

• Additional signals integrated continuously, with submod-
ules

aHR: heart rate.
bEuglycemia target range 70-180 mg/dL (Jacobs et al [44] report euglycemia as 3.9-10 mmol/L, range 70.2-180 mg/dL, whereas all other studies report
results for the range 70-180 mg/dL).
cAP: artificial pancreas.
dSAP: sensor-augmented pump.
eSH: single hormone.
fDH: dual hormone.
gPLGS: predictive low-glucose suspend.

MATLAB was used in most of the studies to conduct
simulations. Quiroz et al [46,47] simulated the use of invasive
inputs based on the Sorenson model [21], the Bergman minimal
model [65], the glucose–adrenaline relationship discussed in
the study by Schultes et al [66], and the glucose–lactate
relationship discussed in the study by Stuart et al [67]. Khan et
al [48] and Qaisar et al [49] also used the Bergman minimal
model, as well as simulated meals, ECG, and subcutaneous
delays. Jacobs et al [42] used the Hovorka insulin
pharmacodynamics model [68], the insulin pharmacokinetics

model by Wilinska et al [69], the glucagon pharmacokinetics
model by Lv et al [70], the glucagon pharmacodynamics model
by Bakhtiani et al [71], and the exercise model by
Hernandez-Ordonez et al [72] for their simulation. Resalat et
al [43] and Hajizadeh et al [38] conducted their simulations
based on simulators developed by their own research groups
[24,25].

DeBoer et al [51], Breton et al [52], and Jacobs et al [44,45]
carried out a clinical trial to evaluate their switching mode
controller after obtaining FDA and institutional review board
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approvals. Breton et al [52] and DeBoer et al [51] reported a
reduction in hypoglycemic events in adolescents and adults,
respectively, using HR in an activity-augmented control
architecture. Jacobs et al [44] also achieved a reduction in time
spent in hypoglycemia, but there was an increase in the time
spent in hyperglycemia when the exercise-augmented control
structure was used. Similar results were observed in the
subsequent trial by Castle et al [45]. Overall, these randomized
crossover trials were able to identify a reduction in
hypoglycemia when the activity-augmented control structure
was used. It is important to note that activity-augmented APS
design might be compromised during different types of exercises
(high-intensity training and resistance exercise), which has not
been explored. Turksoy et al [39-41] focused on having a
medical expert to review each insulin dose before the application
and obtained institutional review board approval. They focused
on integrating continuous inputs (EE and GSR) into the
controller and developing submodules and conducted clinical
trials for evaluation. They succeeded in improving the time in
target range (70-180 mg/dL) to 76.75% with the integration of
different submodules into the APS. The identified clinical trials
(Table 4) focused on either adolescents, young adults, or adults.
The trials comprised both normal closed-loop trials and
randomized crossover trials, which evaluated different treatment
types and typically ranged in duration from 1 to 4 days. Further
longitudinal studies will be beneficial to ascertain the effects
of sensor noise and unanticipated dropouts that might arise from
the additionally introduced sensors. It is important to conduct
trials encompassing all age groups (children, adolescents, and
adults) to evaluate the robustness of the controllers because

different age groups have different insulin sensitivities, which
affects the controller’s accuracy.

Discussion

Principal Findings
This survey focused on three main verticals: (1) identifying the
types of additional input signals used, (2) analyzing different
APS control methodologies, and (3) exploring MAPS validation
methodologies. In this section, a summary of the findings based
on these aspects, a discussion on the feasibility of MAPS, a
comparison of clinical trial results, and limitations of the
conducted survey are discussed.

Most of the identified inputs were noninvasive, captured through
wearable devices. However, the effectiveness of invasive inputs
has also been analyzed through simulations. Lactate and
adrenaline were the identified invasive inputs used for exercise
detection and hypoglycemia detection. EE (or MET) can be
identified as the most frequent additional input used in APS
development. EE is able to detect exercise, which helps mitigate
the related APS limitations identified previously. Hypoglycemia
prediction has been carried out through the use of inputs such
as ECG, HR, skin resistance, EE, and GSR. GSR has also been
used effectively as an indicator of stress. HR-, EE-, GSR-, and
accelerometer-based studies have been evaluated through
clinical trials mainly because of the easy access through
wearable devices. The technological advancements in wearable
devices would be beneficial for the development of MAPS. A
summary of the distribution of different additional inputs used
in the final APS design and their main focus aspects in the
selected studies is provided in Figure 3.

JMIR Diabetes 2022 | vol. 7 | iss. 1 | e28861 | p. 11https://diabetes.jmir.org/2022/1/e28861
(page number not for citation purposes)

Hettiarachchi et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Distribution of additional inputs used in the final artificial pancreas systems design and their main focus aspects. Only the additional inputs
used in the final design are presented. Input variables used to synthesize the final inputs have been removed. ECG: electrocardiogram; EE: energy
expenditure; HR: heart rate; GSR: galvanic skin response; MET: metabolic equivalent.

Most of the studies (8/11, 73%) focused on augmenting
single-hormone APS compared with dual-hormone systems.
Identifying additional inputs that can be used to address current
limitations and directly integrating those inputs into the
controller has shown promise. The development of submodules
based on these limitations and switching the mode of the
controller through activity detection can also be identified as

effective approaches to MAPS design. Different control
algorithms and architecture have been proposed in previous
research. Adaptive model–based controlling methods have been
frequently used for controller development.

Validations were carried out in the studies in silico (7/11, 63%)
as well as in vivo (4/11, 36%). Both quantitative and qualitative
metrics were used to evaluate the effectiveness of the proposed
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systems. The time in hypoglycemia, euglycemia, and
hyperglycemia ranges as well as the number of hypoglycemic
events were some of these measures. However, comparison of
the results is subjective because of the different physiological
models used in the simulators and different protocols (exercise,
meals, and age groups) used in the clinical studies. Furthermore,
some of the studies included additional modules such as
hypoglycemia alarms and meal detection, which were unrelated
to the analyzed additional inputs in this study. This further
limited a valuable interstudy statistical analysis to understand
the impact of the proposed additional Inputs. However, an
analysis of comparable studies within the same research group
has been presented in the previous section. It is important to
mention that 2 groups had focused on developing their own
simulators [24,25] because currently available simulators did
not have other multiple inputs incorporated. The rest of the
studies had combined different physiological models in previous
research to simulate the additional variables. At present, such
a validated simulator is yet to be developed for MAPS. The
development of an FDA-approved simulator for MAPS would
be beneficial to test and compare different proposed control
architectures to statistically evaluate their performance and the
progress in this area. The studies analyzed in the survey have
obtained FDA and institutional review board approvals to
conduct clinical trials.

It is important to review the patents published related to APS
to identify possible technological advancements. We conducted
a search on Google Patents for the period January 2005 to May
2021 and identified 2 patents associated with MAPS
(Multimedia Appendix 4 [73,74]). Both the patents were
associated with the Illinois Institute of Technology research
group identified in the previous section. Patent ID
US8690820B2 [73] presented a device where a glucose sensor
and physiological status–monitoring system communicate with
an automatic controller for glucose control. The controller also
included a module to predict future glucose levels. Patent ID
US10646650B2 [74] introduced additional modules for recursive
model identification of hypoglycemia and hyperglycemia early
alert and alarm, plasma insulin concentration estimation,
physical activity assessment, stress detection and assessment,
sleep detection, and sensor and pump fault detection and
diagnosis. The aforementioned proposed modules using
physiological signals were identified in the previous section.

Feasibility of MAPS
Different additional inputs have been identified and used to
address limitations identified in current generation APS.
However, more signals and relationships need to be explored
to address limitations such as meal and illness estimation. It is
important to quantify the improvement of the APS through the
integration of additional input signals. The benefits should
outweigh the burden of using the external sensors.

The results of the proposed approaches can be analyzed based
on their clinical trials, which provides a fairer interpretation
compared with the simulations. However, it should be noted
that comparison between trials is not straightforward because
of the different protocols (meals and exercise) and the number
of participants involved. The identified clinical trials improved

the time in euglycemia range and showed a reduction in
hypoglycemic events when additional inputs were used.
However, further trials need to be conducted with larger cohorts
and trial durations to ensure the effectiveness of the systems.

The noise and instability associated with wearable sensors also
need to be evaluated because they could have a detrimental
effect on the controllers. Precautionary measures should be set
in place to ensure patient safety during such circumstances. It
is also important to note that the real-world application of MAPS
would be very complex. For example, a person with T1D might
not wear additional wearables during sleep, which might require
the controller to work in highly dynamic environments. Hence,
it is important to evaluate such scenarios through simulations
and clinical studies conducted for longer durations.

Conclusions and Comparison With Prior Work
Kudva et al [30] analyzed the clinical importance of
incorporating additional signals, and Cinar [29] and Patek [31]
analyzed the current limitations in APS design and the approach
to MAPS development. In this survey, we analyzed existing
APS designs to identify the types of input variables used, control
techniques, architectures, and validation methodologies. This
survey was restricted to studies that proposed APS. However,
research studies exist that aim to identify relationships between
various physiological signals and T1D. The identification of
such relationships would be beneficial for the development of
MAPS. Previous research has also focused on designing
submodules such as meal detection [56], carbohydrate
recommendation [57], and hypoglycemia prediction [55]
modules for APS. Given the scope of this survey, such
submodules were only identified and only the final integrated
APS were evaluated. This survey mainly focused on the
technical aspects of MAPS development. It is also important to
explore and evaluate the corresponding practical aspects (eg,
additional user burden, sensor failures, and psychosocial
impact).

The integration of additional signals is an approach to mitigate
the current limitations of the APS. Most of the integrated
additional inputs in previous research are from wearables. The
widespread availability of wearables could be seen as a factor
facilitating MAPS. Past studies have mainly focused on using
the additional inputs for detecting exercise (HR, accelerometer,
and EE), hypoglycemia (ECG, HR, EE, and GSR), and stress
(GSR). In future, these additional sensors might also be valuable
in capturing other physiological changes such as illnesses,
alcohol consumption, and seasonal variations. Previous
randomized crossover studies were able to obtain lower time
in hypoglycemia and improvements in the normal glycemic
range when additional inputs were integrated. However, these
systems need to be improved to obtain better time in target range
for glucose to improve the quality of life of people with T1D.
The lack of an FDA-approved simulator for testing the identified
additional input can be identified as a major constraint regarding
the development of MAPS. It is important to explore different
additional inputs further to establish relationships with glucose
regulation and use them to address the identified limitations.
The practical complexities and psychosocial aspects associated
with MAPS need to be evaluated to develop effective APS.
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APS: artificial pancreas systems
CGM: continuous glucose monitoring
CSII: continuous subcutaneous infusion of insulin
ECG: electrocardiogram
EE: energy expenditure
FDA: Food and Drug Administration
GSR: galvanic skin response
HR: heart rate
MAPS: multi-input artificial pancreas systems
MET: metabolic equivalent
MPC: model predictive control
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
T1D: type 1 diabetes
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