2 research outputs found

    ASSESSING THE SPATIAL ACCURACY AND PRECISION OF LIDAR FOR REMOTE SENSING IN AGRICULTURE

    Get PDF
    The objective of this whole study was to evaluate a LiDAR sensor for high-resolution remote sensing in agriculture. A linear motion system was developed to precisely control the dynamics of LiDAR sensor in effort to remove uncertainty in the LiDAR position/velocity while under motion. A user control interface was developed to operate the system under different velocity profiles and log LiDAR data synchronous to the motion of the system. The LiDAR was then validated using multiple test targets with five different velocity profiles to determine the effect of sensor velocity and height above a target on measurement error. The results indicated that the velocity of the LiDAR was a significant factor affecting the error and standard deviation of the LiDAR measurements, although only by a small margin. Then the concept of modeling the alfalfa using the linear motion system was introduced. Two plots of alfalfa were scanned and processed to extract height and volume and was compared with photogrammetric and field measurements. Insufficient alfalfa plots were scanned which prevented any statistical analysis from being used to compare the different methods. However, the comparison between LiDAR and photogrammetric data showed some promising results which may be further replicated in the future

    As-Applied Estimation of Volumetric Flow Rate from a Single Sprayer Nozzle Series Using Water-Sensitive Spray Cards

    Get PDF
    The objective of this study was to test the feasibility of using coverage measurements from water-sensitive spray cards to estimate the volumetric flow rate at an individual sprayer nozzle. TeeJet VisiFlow Even Flat Spray Tips were selected due to their uniform distribution of coverage. Spray distribution for each nozzle was validated using a spray patternator table with 2.5 cm sampling widths. A rotary test fixture translated water-sensitive spray cards through the spray dispersion (water at ambient conditions) at a constant angular velocity and a radius of 1.2 m. The test fixture measured volumetric flow and pressure at the nozzle and recorded data at a rate of 10 Hz. A helical gear pump and a piston-type pressure regulating valve were used to provide constant pressure. The first experiment fixed the test fixture speed at 3.14 rad s-1 and used varying pressures from 70 to 552 kPa (10 to 80 psi) in 70 kPa (10 psi) increments. First-order and second-order regression models were developed for the nozzle series, and validation data were collected at intermediate pressures to test the ability of the model to predict volumetric flow rates. The second experiment fixed the system pressure at 310 kPa (45 psi) and varied the speed of the test fixture at seven increments between 2.0 and 3.8 rad s-1. Spray cards were digitized using a scanner and processed for coverage using the MATLAB image processing toolbox. Results showed that the accuracy of the spray card method was within 1% full-scale of a commercial impeller flowmeter for a single series of nozzles moving at constant speed. Varying speed could be accounted for but required knowledge of the individual nozzle model. The method demonstrated in this study may be useful for field validation of variable-rate control systems on agricultural sprayers
    corecore