2 research outputs found

    Characterisation and Environmental Significance of Glauconite from Mining Waste of the Egorievsk Phosphorite Deposit

    No full text
    This article presents the results of a study of glauconite obtained from phosphate rock waste. The aim is to study the morphological, structural and chemical characteristics of glauconite and to determine the potential for secondary use of mining waste in the agricultural sector. The electromagnetic separation method was used to obtain glauconite concentrate. The optimum parameters for obtaining the maximum mineral content in the concentrate were determined. Studies have shown that glauconite is characterised by globular, granular grains of the highly mature variety. Glauconite almost invariably contains inclusions of pyrite and apatite, which significantly improve the characteristics of the fertiliser. Laboratory experiments have shown that glauconite waste and glauconite concentrate have a positive effect on plant growth and development. The high potassium content, the favourable globular shape of the grains, and the presence of apatite and pyrite inclusions indicate the potential use of glauconite from mining waste as a potash fertiliser. Application of glauconite fertiliser to the soil will provide an opportunity to improve its texture, providing better moisture and aeration. The use of glauconite fertiliser is particularly valuable on acidic soils where apatite can be dissolved, making phosphorus available to plants. This nutrient additionally favours plant growth, as well as reducing the risk of heavy metal accumulation in the soil. Thus, glauconite from the waste of the Egorievsk deposit represents a promising fertiliser for improving soil quality and increasing crop yields

    Intercalation of carbamide to globular glauconite by chemical processing for the creation of slow-release nanocomposites

    Get PDF
    This article investigates the intercalation of carbamide within globular glauconite involving the chemical activation of glauconite with carbamide solution-gel at varying concentrations of total nitrogen (N). Mineral nanocomposites were prepared with a multitude of novel functions. As the N concentration of the initial solution increased, the proportion of intercalated N enhanced to 8%. A 20% of N concentration in carbamide solution maximizes intercalation. Intercalation occurs in the interlayer of smectite layers (micropores) in glauconite. In nanocomposites, the decrease in specific surface space, total volume pores, and average pore size reflect the absorption of carbamide in meso- and macropores of glauconite globules. Glauconite nanocomposites retain a spherical particle morphology and a distinct microlayer close to the surface. The increased proportion of nitrogen in the microlayers close to the surface indicates a high filtration capacity of the globules. The near-surface microlayer serves as a diffusion channel for the glauconite interior, where new substances are absorbed in the micro- (interlayer) and macropores. The stepwise kinetics of nutrient release, which supports the various forms of carbamide absorption in glauconite, distinguishes the nanocomposites. In addition to N-compounds, glauconite nanocomposites are mineral sources of the available potassium (K) in soils. As a result, chemically manufactured glauconite nanocomposites have some following advantages: the micro-granular mineral form, a permeable inner near-surface microlayer, incubated in micro-, meso-, and macropores N-compounds, and the available K
    corecore