38 research outputs found

    The Novel Deacetylase Inhibitor AR-42 Demonstrates Pre-Clinical Activity in B-Cell Malignancies In Vitro and In Vivo

    Get PDF
    While deacetylase (DAC) inhibitors show promise for the treatment of B-cell malignancies, those introduced to date are weak inhibitors of class I and II DACs or potent inhibitors of class I DAC only, and have shown suboptimal activity or unacceptable toxicities. We therefore investigated the novel DAC inhibitor AR-42 to determine its efficacy in B-cell malignancies.In mantle cell lymphoma (JeKo-1), Burkitt's lymphoma (Raji), and acute lymphoblastic leukemia (697) cell lines, the 48-hr IC(50) (50% growth inhibitory concentration) of AR-42 is 0.61 microM or less. In chronic lymphocytic leukemia (CLL) patient cells, the 48-hr LC(50) (concentration lethal to 50%) of AR-42 is 0.76 microM. AR-42 produces dose- and time-dependent acetylation both of histones and tubulin, and induces caspase-dependent apoptosis that is not reduced in the presence of stromal cells. AR-42 also sensitizes CLL cells to TNF-Related Apoptosis Inducing Ligand (TRAIL), potentially through reduction of c-FLIP. AR-42 significantly reduced leukocyte counts and/or prolonged survival in three separate mouse models of B-cell malignancy without evidence of toxicity.Together, these data demonstrate that AR-42 has in vitro and in vivo efficacy at tolerable doses. These results strongly support upcoming phase I testing of AR-42 in B-cell malignancies

    DNA detection using commercial mobile phones

    No full text

    Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    Get PDF
    Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy

    Wireless and Powerless Sensing Node System Developed for Monitoring Motors

    Get PDF
    Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine’s reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine’s metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor’s shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program

    Enabling Smart Air Conditioning by Sensor Development: A Review

    No full text
    The study investigates the development of sensors, in particular the use of thermo-fluidic sensors and occupancy detectors, to achieve smart operation of air conditioning systems. Smart operation refers to the operation of air conditioners by the reinforcement of interaction to achieve both thermal comfort and energy efficiency. Sensors related to thermal comfort include those of temperature, humidity, and pressure and wind velocity anemometers. Improvements in their performance in the past years have been studied by a literature survey. Traditional occupancy detection using passive infra-red (PIR) sensors and novel methodologies using smartphones and wearable sensors are both discussed. Referring to the case studies summarized in this study, air conditioning energy savings are evaluated quantitatively. Results show that energy savings of air conditioners before 2000 was 11%, and 30% after 2000 by the integration of thermo-fluidic sensors and occupancy detectors. By utilizing wearable sensing to detect the human motions, metabolic rates and related information, the energy savings can reach up to 46.3% and keep the minimum change of predicted mean vote (∆PMV→0), which means there is no compromise in thermal comfort. This enables smart air conditioning to compensate for the large variations from person to person in terms of physiological and psychological satisfaction, and find an optimal temperature for everyone in a given space. However, this tendency should be evidenced by more experimental results in the future

    Sustainable Air-Conditioning Systems Enabled by Artificial Intelligence: Research Status, Enterprise Patent Analysis, and Future Prospects

    No full text
    Artificial intelligence (AI) technologies have developed rapidly since 2000. Numerous academic papers have been published regarding energy efficiency improvements for air-conditioning systems. This study reviewed 12 review papers and selected 85 specific cases of applications of AI for HVAC energy usage reduction. In addition to academic studies, 31,221 patents related to HVAC energy-saving equipment filed by 11 companies were investigated. In order to analyze the large amount of data, this study developed a resource description framework (RDF) as an analysis tool. This tool was used with a natural language processing (NLP) program to compare the contents of academic papers and patents. With the automated analysis program, this study aimed to link academic research and corporate research and development, mainly the enterprise patent applications, to analyze the reasons why AI can effectively save energy. This represents a complete analysis of the current status of academic and industrial development. Six methods were identified to save energy effectively, including model-based predictive control (MPC), thermal comfort control, model-free predictive control, control optimization, multi-agent control (MAC), and knowledge-based system/rule set (KBS/RS)-based control. The energy savings of these methods were quantified to be 8.8–25.5%. These methods are widely covered by the examined corporate patent applications. After using NLP to retrieve patent keywords, the landscapes of enterprise patents were constructed and the future research directions were identified. It is concluded that 10 topics, including novel neural network designs, smartphone-assisted machine learning, and transfer learning, can be used to increase the energy-saving effects of AI and enable sustainable air-conditioning systems

    Air Conditioning Energy Saving from Cloud-Based Artificial Intelligence: Case Study of a Split-Type Air Conditioner

    No full text
    This study developed cloud-based artificial intelligence (AI) that could run AI programs in the cloud and control air conditioners remotely from home. AI programs in the cloud can be altered any time to provide good control performances without altering the control hardware. The air conditioner costs and prices can thus be reduced by the increasing energy efficiency. Cloud control increased energy efficiency through AI control based on two conditions: (1) a constant indoor cooling rate and (2) a fixed stable range of indoor temperature control. However, if the two conditions cannot be guaranteed or the cloud signals are lost, the original proportional-integral-differential (PID) control equipped in the air conditioner can be used to ensure that the air conditioner works stably. The split-type air conditioner tested in this study is ranked eighth among 1177 air conditioners sold in Taiwan according to public data. It has extremely high energy efficiency, and using AI to increase its energy efficiency was challenging. Thus, this study analyzed the literature of AI-assisted controls since 1995 and applied it to heating, ventilation, and air conditioning equipment. Two technologies with the highest energy saving efficiency, a fuzzy + PID and model-based predictive control (MPC), were chosen to be developed into two control methodologies of cloud-based AI. They were tested for whether they could improve air conditioning energy efficiency. Energy efficiency measurement involved an enthalpy differential test chamber. The two indices, namely the energy efficiency ratio (EER) and cooling season power factor (CSPF), were tested. The EER measurement is the total efficiency value obtained when testing the required electric power at the maximum cooling capacity under constantly controlled temperature and humidity. CSPF is the tested efficiency value under dynamic conditions from changing indoor and outdoor temperatures and humidity according to the climate conditions in Taiwan. By using the static energy efficiency index EER for evaluation, the fuzzy + PID control could not save energy, but MPC increased the EER value by 9.12%. By using the dynamic energy efficiency index CSPF for evaluation, the fuzzy + PID control could increase CSPF by 3.46%, and MPC could increase energy efficiency by 7.37%
    corecore