42 research outputs found

    Temperature Effects on Optical Trapping Stability

    Get PDF
    This research was funded by the Ministerio de Ciencia e Innovacion de Espana (PID2019-106211RB-I00 and PID2019-105195RA-I00) and by Universidad Autonoma de Madrid and Comunidad Autonoma de Madrid (SI1/PJI/2019-00052). D.L. acknowledges a scholarship from the China Scholarship Council (No. 201808350097).In recent years, optically trapped luminescent particles have emerged as a reliable probe for contactless thermal sensing because of the dependence of their luminescence on environmental conditions. Although the temperature effect in the optical trapping stability has not always been the object of study, the optical trapping of micro/nanoparticles above room temperature is hindered by disturbances caused by temperature increments of even a few degrees in the Brownian motion that may lead to the release of the particle from the trap. In this report, we summarize recent experimental results on thermal sensing experiments in which micro/nanoparticles are used as probes with the aim of providing the contemporary state of the art about temperature effects in the stability of potential trapping processes.Spanish Government PID2019-106211RB-I00 PID2019-105195RA-I00Universidad Autonoma de Madrid and Comunidad Autonoma de Madrid SI1/PJI/2019-00052China Scholarship Council 20180835009

    Single-Cell Biodetection by Upconverting Microspinners

    Full text link
    This is the peer reviewed version of the following article: Ortiz‐Rivero, E., Prorok, K., SkowickƂ, M., Lu, D., Bednarkiewicz, A., Jaque, D., & Haro‐GonzĂĄlez, P. (2019). Single‐Cell Biodetection by Upconverting Microspinners. Small, 15(46), 1904154, which has been published in final form at https://doi.org/10.1002/smll.201904154. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsNear-infrared-light-mediated optical tweezing of individual upconverting particles has enabled all-optical single-cell studies, such as intracellular thermal sensing and minimally invasive cytoplasm investigations. Furthermore, the intrinsic optical birefringence of upconverting particles renders them light-driven luminescent spinners with a yet unexplored potential in biomedicine. In this work, the use of upconverting spinners is showcased for the accurate and specific detection of single-cell and single-bacteria attachment events, through real-time monitoring of the spinners rotation velocity of the spinner. The physical mechanisms linking single-attachment to the angular deceleration of upconverting spinners are discussed in detail. Concomitantly, the upconversion emission generated by the spinner is harnessed for simultaneous thermal sensing and thermal control during the attachment event. Results here included demonstrate the potential of upconverting particles for the development of fast, high-sensitivity, and cost-effective systems for single-cell biodetectionThis work was partially supported by the Ministerio de EconomĂ­a y Competitividad de España (MAT2016‐75362‐C3‐1‐R) and by the Instituto de Salud Carlos III (PI16/00812), by the Comunidad AutĂłnoma de Madrid (B2017/BMD‐3867RENIMCM), and cofinanced by the European Structural and investment fund Additional funding was provided by COST action CM1403. D.L. thanks the Chinese Scholarship Council for financial support. K.P. acknowledges the support from Foundation for Polish Science (FNP) under START program. A.B. acknowledges financial support from NCN OPUS DEC‐2017/27/B/ST7/01255 gran

    Thermoresponsive Polymeric Nanolenses Magnify the Thermal Sensitivity of Single Upconverting Nanoparticles

    Get PDF
    Lanthanide-based upconverting nanoparticles (UCNPs) are trustworthy workhorses in luminescent nanothermometry. The use of UCNPs-based nanothermometers has enabled the determination of the thermal properties of cell membranes and monitoring of in vivo thermal therapies in real time. However, UCNPs boast low thermal sensitivity and brightness, which, along with the difficulty in controlling individual UCNP remotely, make them less than ideal nanothermometers at the single-particle level. In this work, it is shown how these problems can be elegantly solved using a thermoresponsive polymeric coating. Upon decorating the surface of NaYF4:Er3+,Yb3+ UCNPs with poly(N-isopropylacrylamide) (PNIPAM), a >10-fold enhancement in optical forces is observed, allowing stable trapping and manipulation of a single UCNP in the physiological temperature range (20–45 °C). This optical force improvement is accompanied by a significant enhancement of the thermal sensitivity— a maximum value of 8% °C+1 at 32 °C induced by the collapse of PNIPAM. Numerical simulations reveal that the enhancement in thermal sensitivity mainly stems from the high-refractive-index polymeric coating that behaves as a nanolens of high numerical aperture. The results in this work demonstrate how UCNP nanothermometers can be further improved by an adequate surface decoration and open a new avenue toward highly sensitive single-particle nanothermometryThis work was supported by the Ministerio de Ciencia e InnovaciĂłn de España (PID2019-106211RB-I00 PID2019-105195RA-I00 and MAT2017- 83111R), by the Comunidad de Madrid (S2017/BMD-3867 RENIM-CM), co-financed by European Structural and Investment Fund and by the Universidad AutĂłnoma de Madrid and Comunidad AutĂłnoma de Madrid (SI1/PJI/2019-00052 and PR38/21-36 ANTICIPA-CM). D.L. acknowledges a scholarship from the China Scholarship Council (201808350097). J.R.B. acknowledges the support from Carl Tryggers Foundation (CTS18:229). M.I.M acknowledges financial support from the Spanish Ministerio de Ciencia e InnovaciĂłn, through the “MarĂ­a de Maeztu” Programme for Units of Excellence in R&D (CEX2018-000805-M) and the MELODIA PGC2018-095777-B-C22 proje

    Associations between urinary paraben levels and obesity of 10-year-old children

    Get PDF
    BackgroundParabens, a widely used class of preservatives, are suspected to be potential obesogens as emerging endocrine disrupting chemicals with reproductive and developmental toxicity. ObjectiveTo analyze five urinary parabens (PBs) and estimate the associations of exposure to PBs with adiposity measures in 10-year-old school-age children. MethodsA total of 471 school-age children aged 10 years from the Sheyang Mini Birth Cohort were enrolled in this study. A questionnaire survey was conducted to collect socio-demographic information, physical activity, and dietary intake. Weight, height, and waist circumference of children were measured, and age- and sex-adjusted body mass index (BMI-Z score) was calculated. Spot urine samples were collected during the follow-up visits. Urinary concentrations of five PBs including methyl-paraben (MeP), ethyl-paraben (EtP), propyl-paraben (PrP), butyl-paraben (BuP), and benzyl-paraben (BzP) were detected by gas chromatography-tandem mass spectrometry (GC-MS/MS). Generalized linear models (GLMs) and Bayesian kernel machine regression (BKMR) models were applied to estimate associations of individual/overall urinary PBs concentrations with BMI Z-score and waist circumference. ResultsThe positive rates of selected five urinary PBs were in the range from 78.98% to 98.94%. The urinary PBs concentrations (geometric mean) were in the range of 0.31-5.43 ÎŒg·L−1. The children's BMI Z-score and waist circumference (mean ± standard deviation) were (0.56±1.40) and (67.62±10.07) cm respectively. The GLMs results showed that the urinary BzP concentration was negatively associated with waist circumference (b=−0.08, 95%CI: −0.14, −0.02; P=0.01). In sex-stratified analysis, the urinary concentration of BzP was negatively associated with BMI-Z score (b=−0.59, 95%CI: −0.88, −0.30; P<0.001) and waist circumference (b=−0.80, 95%CI: −1.23, −0.37; P<0.001) in boys, but not in girls. The BKMR results also found significant negative correlations of urinary BzP concentrations with BMI-Z score and waist circumference, which were consistent with the GLM results. ConclusionThe selected 10-year-old children are extensively exposed to PBs in the study area. Furthermore, childhood PBs exposure may have potential impacts on childhood adiposity measures with sex-specific effects

    Tenomodulin knockout mice exhibit worse late healing outcomes with augmented trauma-induced heterotopic ossification of Achilles tendon

    Get PDF
    Heterotopic ossification (HO) represents a common problem after tendon injury with no effective treatment yet being developed. Tenomodulin (Tnmd), the best-known mature marker for tendon lineage cells, has important effects in tendon tissue aging and function. We have reported that loss of Tnmd leads to inferior early tendon repair characterized by fibrovascular scaring and therefore hypothesized that its lack will persistently cause deficient repair during later stages. Tnmd knockout (Tnmd−/−) and wild-type (WT) animals were subjected to complete Achilles tendon surgical transection followed by end-to-end suture. Lineage tracing revealed a reduction in tendon-lineage cells marked by ScleraxisGFP, but an increase in alpha smooth muscle actin myofibroblasts in Tnmd−/− tendon scars. At the proliferative stage, more pro-inflammatory M1 macrophages and larger collagen II cartilaginous template were detected in this group. At the remodeling stage, histological scoring revealed lower repair quality in the injured Tnmd−/− tendons, which was coupled with higher HO quantified by micro-CT. Tendon biomechanical properties were compromised in both groups upon injury, however we identified an abnormal stiffening of non-injured Tnmd−/− tendons, which possessed higher static and dynamic E-moduli. Pathologically thicker and abnormally shaped collagen fibrils were observed by TEM in Tnmd−/− tendons and this, together with augmented HO, resulted in diminished running capacity of Tnmd−/− mice. These novel findings demonstrate that Tnmd plays a protecting role against trauma-induced endochondral HO and can inspire the generation of novel therapeutics to accelerate repair

    The Novel Deacetylase Inhibitor AR-42 Demonstrates Pre-Clinical Activity in B-Cell Malignancies In Vitro and In Vivo

    Get PDF
    While deacetylase (DAC) inhibitors show promise for the treatment of B-cell malignancies, those introduced to date are weak inhibitors of class I and II DACs or potent inhibitors of class I DAC only, and have shown suboptimal activity or unacceptable toxicities. We therefore investigated the novel DAC inhibitor AR-42 to determine its efficacy in B-cell malignancies.In mantle cell lymphoma (JeKo-1), Burkitt's lymphoma (Raji), and acute lymphoblastic leukemia (697) cell lines, the 48-hr IC(50) (50% growth inhibitory concentration) of AR-42 is 0.61 microM or less. In chronic lymphocytic leukemia (CLL) patient cells, the 48-hr LC(50) (concentration lethal to 50%) of AR-42 is 0.76 microM. AR-42 produces dose- and time-dependent acetylation both of histones and tubulin, and induces caspase-dependent apoptosis that is not reduced in the presence of stromal cells. AR-42 also sensitizes CLL cells to TNF-Related Apoptosis Inducing Ligand (TRAIL), potentially through reduction of c-FLIP. AR-42 significantly reduced leukocyte counts and/or prolonged survival in three separate mouse models of B-cell malignancy without evidence of toxicity.Together, these data demonstrate that AR-42 has in vitro and in vivo efficacy at tolerable doses. These results strongly support upcoming phase I testing of AR-42 in B-cell malignancies

    Atrapamiento Ăłptico de nanopartĂ­culas de conversiĂłn ascendente coloidal por encima de la temperatura ambiente

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física de Materiales. Fecha de Lectura: 03-11-202

    Research progress in per- and polyfluoroalkylsubstances PFASs exposure and bone health

    No full text
    Per- and polyfluoroalkyl substances PFASs are a new type of persistent organic pollutants with global attention. They have shown multiple toxic effects due to their persistent accumulation in human body through exposure to environmental media such as drinking water food atmosphere and soil. However the bone toxicity of PFASs has not attracted enough attention. It is believed that the exposure and accumulation of PFASs in human have a significant impact on the bone health especially hindering the healthy bone development in infants and adolescents and aggravating the occurrence of bone loss and fracture in the elder populations. This paper will review the research progress of the effects of PFASs exposure on bone health indicators such as bone mineral density and discuss the mechanisms of PFAS in bone toxicity. This review will provide references for revealing the effects of PFASs exposure on bone health and their toxic mechanisms

    Body conformation traits in early-lactation associated with clinical mastitis and lameness in lactating Chinese holstein cows

    No full text
    Abstract Background Comprehending the correlation between body conformation traits of cows at the early stages of lactation and prevalent lactation diseases might facilitate the execution of selection and feeding strategies that prioritize cow health. This study aimed to evaluate the impact of body conformation traits on the incidence of clinical mastitis and lameness in Chinese Holstein cows. From a pasture herd of 1472 early lactating Chinese Holstein cows, we evaluated 20 body conformation traits. During lactation, this pasture herd was visited weekly to gather clinical mastitis and lameness data. A nine-point scale was used to determine the conformation traits of cows to clarify their linear characters, including frame capacity, rump (RU), feet and leg (FL), mammary system (MS), and dairy character. A longitudinal binary disease (0 = healthy; 1 = diseased) data structure was created by allocating disease records to adjacent official test dates. The impact of body conformation traits on the risk of developing diseases (clinical mastitis and lameness) was analyzed using the logistic regression models. Results Compared to cows with low total scores (75–79 points), those with high total scores (80–85 points) of body conformation traits had a significantly lower risk of mastitis (P < 0.001). The disease status (0 or 1: binary variable) of clinical mastitis in lactating cows was significantly impacted negatively by age (P < 0.05). The fore udder attachment (FUA), angularity, rear attachment height (RAH), and rear teat placement (RTP) were all significantly associated with clinical mastitis during lactation (P < 0.05). The rear leg-rear view (RLRV) was significantly correlated with correlated considerably (P < 0.05) with lameness during lactation. An ideal score of four points on the lameness risk dimension of the RLRV may indicate a low risk of lameness. Since the risk of mastitis decreased as this trait score increased, the RTP may be an ideal marker for mastitis risk. Conclusions According to the study, clinical mastitis and lameness risks in cows can be estimated using their body conformation traits. Cows with more centrally located rear teats have a lower risk of mastitis. These results may help dairy farmers identify cows at high risk of disease early in lactation and aid in breeding for disease resistance in cows
    corecore