10,985 research outputs found

    Ising Model on a random network with annealed or quenched disorder

    Full text link
    We study the equilibrium properties of an Ising model on a disordered random network where the disorder can be quenched or annealed. The network consists of four-fold coordinated sites connected via variable length one-dimensional chains. Our emphasis is on nonuniversal properties and we consider the transition temperature and other equilibrium thermodynamic properties, including those associated with one dimensional fluctuations arising from the chains. We use analytic methods in the annealed case, and a Monte Carlo simulation for the quenched disorder. Our objective is to study the difference between quenched and annealed results with a broad random distribution of interaction parameters. The former represents a situation where the time scale associated with the randomness is very long and the corresponding degrees of freedom can be viewed as frozen, while the annealed case models the situation where this is not so. We find that the transition temperature and the entropy associated with one dimensional fluctuations are always higher for quenched disorder than in the annealed case. These differences increase with the strength of the disorder up to a saturating value. We discuss our results in connection to physical systems where a broad distribution of interaction strengths is present.Comment: 11 pages including 9 figures. To appear in Phys. Rev.

    Superfluid Field response to Edge dislocation motion

    Full text link
    We study the dynamic response of a superfluid field to a moving edge dislocation line to which the field is minimally coupled. We use a dissipative Gross-Pitaevskii equation, and determine the initial conditions by solving the equilibrium version of the model. We consider the subsequent time evolution of the field for both glide and climb dislocation motion and analyze the results for a range of values of the constant speed VDV_D of the moving dislocation. We find that the type of motion of the dislocation line is very important in determining the time evolution of the superfluid field distribution associated with it. Climb motion of the dislocation line induces increasing asymmetry, as function of time, in the field profile, with part of the probability being, as it were, left behind. On the other hand, glide motion has no effect on the symmetry properties of the superfluid field distribution. Damping of the superfluid field due to excitations associated with the moving dislocation line occurs in both cases.Comment: 10 pages 7 figures. To appear in Phys. Rev

    Hydrodynamics of compressible superfluids in confined geometries

    Full text link
    We present a study of the hydrodynamics of compressible superfluids in confined geometries. We use a perturbative procedure in terms of the dimensionless expansion parameter (v/vs)2(v/v_s)^2 where vv is the typical speed of the flow and vsv_s the speed of sound. A zero value of this parameter corresponds to the incompressible limit. We apply the procedure to two specific problems: the case of a trapped superfluid with a gaussian profile of the local density, and that of a superfluid confined in a rotating obstructed cylinder. We find that the corrections due to finite compressibility which are, as expected, negligible for liquid He, are important but amenable to the perturbative treatment for typical ultracold atomic systems.Comment: 17 pages, including 7 figures. To appear in Journ. Phys.

    Magnetic properties of Mn-doped Ge46 and Ba8Ge46 clathrates

    Full text link
    We present a detailed study of the magnetic properties of unique cluster assembled solids namely Mn doped Ge46 and Ba8Ge46 clathrates using density functional theory. We find that ferromagnetic (FM) ground states may be realized in both the compounds when doped with Mn. In Mn2Ge44, ferromagnetism is driven by hybridization induced negative exchange splitting, a generic mechanism operating in many diluted magnetic semiconductors. However, for Mn-doped Ba8Ge46 clathrates incorporation of conduction electrons via Ba encapsulation results in RKKY-like magnetic interactions between the Mn ions. We show that our results are consistent with the major experimental observations for this system.Comment: 6 pages, 4 figure

    Validity of the linear coupling approximation in heavy-ion fusion reactions at sub barrier energies

    Get PDF
    The role of higher order coupling of surface vibrations to the relative motion in heavy-ion fusion reactions at near-barrier energies is investigated. The coupled channels equations are solved to all orders, and also in the linear and the quadratic coupling approximations. Taking 64^{64}Ni + 92,96^{92,96}Zr reactions as examples, it is shown that all order couplings lead to considerably improved agreement with the experimentally measured fusion cross sections and average angular momenta of the compound nucleus for such heavy nearly symmetric systems. The importance of higher order coupling is also examined for asymmetric systems like 16^{16}O + 112^{112}Cd, 144^{144}Sm, for which previous calculations of the fusion cross section seemed to indicate that the linear coupling approximation was adequate. It is shown that the shape of the barrier distributions and the energy dependence of the average angular momentum can change significantly when the higher order couplings are included, even for systems where measured fusion cross sections may seem to be well reproduced by the linear coupling approximation.Comment: Latex file, 15 pages, 6 figure

    Dimension-adaptive bounds on compressive FLD Classification

    Get PDF
    Efficient dimensionality reduction by random projections (RP) gains popularity, hence the learning guarantees achievable in RP spaces are of great interest. In finite dimensional setting, it has been shown for the compressive Fisher Linear Discriminant (FLD) classifier that forgood generalisation the required target dimension grows only as the log of the number of classes and is not adversely affected by the number of projected data points. However these bounds depend on the dimensionality d of the original data space. In this paper we give further guarantees that remove d from the bounds under certain conditions of regularity on the data density structure. In particular, if the data density does not fill the ambient space then the error of compressive FLD is independent of the ambient dimension and depends only on a notion of ‘intrinsic dimension'

    Persistence in nonequilibrium surface growth

    Full text link
    Persistence probabilities of the interface height in (1+1)- and (2+1)-dimensional atomistic, solid-on-solid, stochastic models of surface growth are studied using kinetic Monte Carlo simulations, with emphasis on models that belong to the molecular beam epitaxy (MBE) universality class. Both the initial transient and the long-time steady-state regimes are investigated. We show that for growth models in the MBE universality class, the nonlinearity of the underlying dynamical equation is clearly reflected in the difference between the measured values of the positive and negative persistence exponents in both transient and steady-state regimes. For the MBE universality class, the positive and negative persistence exponents in the steady-state are found to be θ+S=0.66±0.02\theta^S_{+} = 0.66 \pm 0.02 and θS=0.78±0.02\theta^S_{-} = 0.78 \pm 0.02, respectively, in (1+1) dimensions, and θ+S=0.76±0.02\theta^S_{+} = 0.76 \pm 0.02 and θS=0.85±0.02\theta^S_{-} =0.85 \pm 0.02, respectively, in (2+1) dimensions. The noise reduction technique is applied on some of the (1+1)-dimensional models in order to obtain accurate values of the persistence exponents. We show analytically that a relation between the steady-state persistence exponent and the dynamic growth exponent, found earlier to be valid for linear models, should be satisfied by the smaller of the two steady-state persistence exponents in the nonlinear models. Our numerical results for the persistence exponents are consistent with this prediction. We also find that the steady-state persistence exponents can be obtained from simulations over times that are much shorter than that required for the interface to reach the steady state. The dependence of the persistence probability on the system size and the sampling time is shown to be described by a simple scaling form.Comment: 28 pages, 16 figure

    Dislocation Mobility and Anomalous Shear Modulus Effect in 4^4He Crystals

    Full text link
    We calculate the dislocation glide mobility in solid 4^4He within a model that assumes the existence of a superfluid field associated with dislocation lines. Prompted by the results of this mobility calculation, we study within this model the role that such a superfluid field may play in the motion of the dislocation line when a stress is applied to the crystal. To do this, we relate the damping of dislocation motion, calculated in the presence of the assumed superfluid field, to the shear modulus of the crystal. As the temperature increases, we find that a sharp drop in the shear modulus will occur at the temperature where the superfluid field disappears. We compare the drop in shear modulus of the crystal arising from the temperature dependence of the damping contribution due to the superfluid field, to the experimental observation of the same phenomena in solid 4^4He and find quantitative agreement. Our results indicate that such a superfluid field plays an important role in dislocation pinning in a clean solid 4^4He at low temperatures and in this regime may provide an alternative source for the unusual elastic phenomena observed in solid 4^4He.Comment: 17 pages, 2 figures. To appear in JLT

    Probing the Structure of Jet Driven Core-Collapse Supernova and Long Gamma Ray Burst Progenitors with High Energy Neutrinos

    Full text link
    Times of arrival of high energy neutrinos encode information about their sources. We demonstrate that the energy-dependence of the onset time of neutrino emission in advancing relativistic jets can be used to extract important information about the supernova/gamma-ray burst progenitor structure. We examine this energy and time dependence for different supernova and gamma-ray burst progenitors, including red and blue supergiants, helium cores, Wolf-Rayet stars, and chemically homogeneous stars, with a variety of masses and metallicities. For choked jets, we calculate the cutoff of observable neutrino energies depending on the radius at which the jet is stalled. Further, we exhibit how such energy and time dependence may be used to identify and differentiate between progenitors, with as few as one or two observed events, under favorable conditions

    Continuous phase transition and negative specific heat in finite nuclei

    Get PDF
    The liquid-gas phase transition in finite nuclei is studied in a heated liquid-drop model where the nuclear drop is assumed to be in thermodynamic equilibrium with its own evaporated nucleonic vapor conserving the total baryon number and isospin of the system. It is found that in the liquid-vapor coexistence region the pressure is not a constant on an isotherm indicating that the transition is continuous. At constant pressure, the caloric curve shows some anomalies, namely, the systems studied exhibit negative heat capacity in a small temperature domain. The dependence of this specific feature on the mass and isospin of the nucleus, Coulomb interaction and the chosen pressure is studied. The effects of the presence of clusters in the vapor phase on specific heat have also been explored.Comment: 18 pages, 13 figures; Phys. Rev. C (in press
    corecore