19,380 research outputs found
Aspects of power corrections in hadron-hadron collisions
The program of understanding inverse-power law corrections to event shapes
and energy flow observables in e+ e- annihilation to two jets and DIS (1+1)
jets has been a significant success of QCD phenomenology over the last decade.
The important extension of this program to similar observables in hadron
collisions is not straightforward, being obscured by both conceptual and
technical issues. In this paper we shed light on some of these issues by
providing an estimate of power corrections to the inter-jet E_t flow
distribution in hadron collisions using the techniques that were employed in
the e+ e- annihilation and DIS cases.Comment: 15 pages, 1 figure, uses JHEP3.cl
Angular ordering and parton showers for non-global QCD observables
We study the mismatch between a full calculation of non-global
single-logarithms in the large-N_c limit and an approximation based on free
azimuthal averaging, and the consequent angular-ordered pattern of soft gluon
radiation in QCD. We compare the results obtained in either case to those
obtained from the parton showers in the Monte Carlo event generators HERWIG and
PYTHIA, with the aim of assessing the accuracy of the parton showers with
regard to such observables where angular ordering is merely an approximation
even at leading-logarithmic accuracy and which are commonly employed for the
tuning of event generators to data.Comment: 20 pages, 8 figure
The Hessian biased singular value decomposition method for optimization and analysis of force fields
We present methodology (HBFF/SVD) for optimizing the form and parameters of force fields (FF) for molecular dynamics simulations through utilizing information about properties such as the geometry, Hessian, polarizability, stress (crystals), and elastic constants (crystals). This method is based on singular value decomposition (SVD) of the Jacobian describing the partial derivatives in various properties with respect to FF parameters. HBFF/SVD is effective for optimizing the parameters for accurate FFs of organic, inorganic, and transition metal compounds. In addition it provides information on the validity of the functional form of the FF for describing the properties of interest. This method is illustrated by application to organic molecules (CH2O, C2H4, C4H6, C6H8, C6H6, and naphthalene) and inorganic molecules (Cl2CrO2 and Cl2MoO2)
Reduced mutation rate and increased transformability of transposon-free Acinetobacter baylyi ADP1-ISx
ABSTRACT
The genomes of most bacteria contain mobile DNA elements that can contribute to undesirable genetic instability in engineered cells. In particular, transposable insertion sequence (IS) elements can rapidly inactivate genes that are important for a designed function. We deleted all six copies of IS
1236
from the genome of the naturally transformable bacterium
Acinetobacter baylyi
ADP1. The natural competence of ADP1 made it possible to rapidly repair deleterious point mutations that arose during strain construction. In the resulting ADP1-ISx strain, the rates of mutations inactivating a reporter gene were reduced by 7- to 21-fold. This reduction was higher than expected from the incidence of new IS
1236
insertions found during a 300-day mutation accumulation experiment with wild-type ADP1 that was used to estimate spontaneous mutation rates in the strain. The extra improvement appears to be due in part to eliminating large deletions caused by IS
1236
activity, as the point mutation rate was unchanged in ADP1-ISx. Deletion of an error-prone polymerase (
dinP
) and a DNA damage response regulator (
umuD
Ab
[the
umuD
gene of
A. baylyi
]) from the ADP1-ISx genome did not further reduce mutation rates. Surprisingly, ADP1-ISx exhibited increased transformability. This improvement may be due to less autolysis and aggregation of the engineered cells than of the wild type. Thus, deleting IS elements from the ADP1 genome led to a greater than expected increase in evolutionary reliability and unexpectedly enhanced other key strain properties, as has been observed for other clean-genome bacterial strains. ADP1-ISx is an improved chassis for metabolic engineering and other applications.
IMPORTANCE
Acinetobacter baylyi
ADP1 has been proposed as a next-generation bacterial host for synthetic biology and genome engineering due to its ability to efficiently take up DNA from its environment during normal growth. We deleted transposable elements that are capable of copying themselves, inserting into other genes, and thereby inactivating them from the ADP1 genome. The resulting “clean-genome” ADP1-ISx strain exhibited larger reductions in the rates of inactivating mutations than expected from spontaneous mutation rates measured via whole-genome sequencing of lineages evolved under relaxed selection. Surprisingly, we also found that IS element activity reduces transformability and is a major cause of cell aggregation and death in wild-type ADP1 grown under normal laboratory conditions. More generally, our results demonstrate that domesticating a bacterial genome by removing mobile DNA elements that have accumulated during evolution in the wild can have unanticipated benefits.
</jats:p
A Lorentzian cure for Euclidean troubles
There is strong evidence coming from Lorentzian dynamical triangulations that
the unboundedness of the gravitational action is no obstacle to the
construction of a well-defined non-perturbative path integral. In a continuum
approach, a similar suppression of the conformal divergence comes about as the
result of a non-trivial path-integral measure.Comment: 3 page
The Taming of QCD by Fortran 90
We implement lattice QCD using the Fortran 90 language. We have designed
machine independent modules that define fields (gauge, fermions, scalars,
etc...) and have defined overloaded operators for all possible operations
between fields, matrices and numbers. With these modules it is very simple to
write QCD programs. We have also created a useful compression standard for
storing the lattice configurations, a parallel implementation of the random
generators, an assignment that does not require temporaries, and a machine
independent precision definition. We have tested our program on parallel and
single processor supercomputers obtaining excellent performances.Comment: Talk presented at LATTICE96 (algorithms) 3 pages, no figures, LATEX
file with ESPCRC2 style. More information available at:
http://hep.bu.edu/~leviar/qcdf90.htm
Electronic structure and exchange interactions of the ladder vanadates CaV2O5 and MgV2O5
We have performed ab-initio calculations of the electronic structure and
exchange couplings in the layered vanadates CaV2O5 and MgV2O5. Based on our
results we provide a possible explanation of the unusual magnetic properties of
these materials, in particular the large difference in the spin gap between
CaV2O5 and MgV2O5
Probing surface diffuseness of nucleus-nucleus potential with quasielastic scattering at deep sub-barrier energies
We perform a systematic study on the surface property of nucleus-nucleus
potential in heavy-ion reactions using large-angle quasielastic scattering at
energies well below the Coulomb barrier. At these energies, the quasielastic
scattering can be well described by a single-channel potential model.
Exploiting this fact, we point out that systems which involve spherical nuclei
require the diffuseness parameter of around 0.60 fm in order to fit the
experimental data, while systems with a deformed target between 0.8 fm and 1.1
fm.Comment: 6 pages, 6 figure
Effect of spin orbit coupling and Hubbard on the electronic structure of IrO
We have studied in detail the electronic structure of IrO including
spin-orbit coupling (SOC) and electron-electron interaction, both within the
GGA+U and GGA+DMFT approximations. Our calculations reveal that the Ir t
states at the Fermi level largely retain the J =
character, suggesting that this complex spin-orbit entangled state may be
robust even in metallic IrO. We have calculated the phase diagram for the
ground state of IrO as a function of and find a metal insulator
transition that coincides with a magnetic phase change, where the effect of SOC
is only to reduce the critical values of necessary for the transition. We
also find that dynamic correlations, as given by the GGA+DMFT calculations,
tend to suppress the spin-splitting, yielding a Pauli paramagnetic metal for
moderate values of the Hubbard . Our calculated optical spectra and
photoemission spectra including SOC are in good agreement with experiment
demonstrating the importance of SOC in IrO
- …
