3 research outputs found

    Dynamic simulation of activated sludge based wastewater treatment processes: Case studies with Titagarh Sewage Treatment Plant, India

    No full text
    STOAT has been extensively used for the dynamic simulation of an activated sludge based wastewater treatment plant in the Titagarh Sewage Treatment Plant, near Kolkata, India. Some alternative schemes were suggested. Different schemes were compared for the removal of Total Suspended Solids (TSS), b-COD, ammonia, nitrates etc. A combination of IAWQ#1 module with the Takacs module gave best results for the existing scenarios of the Titagarh Sewage Treatment Plant. The modified Bardenpho process was found most effective for reducing the mean b-COD level to as low as 31.4 mg/l, while the mean TSS level was as high as 100.98 mg/l as compared to the mean levels of TSS (92 62 mg/l) and b-COD (92.0 mg/l) in the existing plant. Scheme 2 gave a better scenario for the mean TSS level bringing it down to a mean value of 0.4 mg/l, but a higher mean value for the b-COD level at 54.89 mg/l. The Scheme Final could reduce the mean TSS level to 2.9 mg/l and the mean b-COD level to as low as 38.8 mg/l. The Final Scheme looks to be a technically viable scheme with respect to the overall effluent quality for the plant. (C) 2009 Elsevier B.V. All rights reserved

    Focus on plasma-facing materials in nuclear fusion reactors

    No full text
    International audienceFusion energy is a promising, safe, and reliable green energy solution to the increasing energy demand. However, there are several materials challenges that need to be overcome to increase the technical readiness to a level that enables a fusion pilot plant on the grid. This focus issue aims to identify and address a set of such key impediments for realizing deuterium-tritium (D–T) fusion power in a tokamak reactor and highlight the most recent progress on those research frontiers. The main emphasis of this collection is on materials development challenges resulting from helium irradiation, neutron-induced degradation, thermomechanical loading, and the corrosive environment faced by the divertor and first-wall materials, commonly known as plasma-facing components, and blanket systems for tokamak fusion reactors
    corecore