157 research outputs found
The roles of the subunits in the function of the calcium channel
Dihydropyridine-sensitive voltage-dependent L-type calcium channels are critical to excitation-secretion and excitation-contraction coupling. The channel molecule is a complex of the main, pore-forming subunit alpha 1 and four additional subunits: alpha 2, delta, beta, and gamma (alpha 2 and delta are encoded by a single messenger RNA). The alpha 1 subunit messenger RNA alone directs expression of functional calcium channels in Xenopus oocytes, and coexpression of the alpha 2/delta and beta subunits enhances the amplitude of the current. The alpha 2, delta, and gamma subunits also have pronounced effects on its macroscopic characteristics, such as kinetics, voltage dependence of activation and inactivation, and enhancement by a dihydropyridine agonist. In some cases, specific modulatory functions can be assigned to individual subunits, whereas in other cases the different subunits appear to act in concert to modulate the properties of the channel
Cardiac calcium channels expressed in Xenopus oocytes are modulated by dephosphorylation but not by cAMP-dependent phosphorylation
Expression of an atrial G-protein-activated potassium channel in Xenopus oocytes
Injection of rat atrial RNA into Xenopus oocytes resulted in the expression of a guanine nucleotide binding (G) protein-activated K+ channel. Current through the channel could be activated by acetylcholine or, if RNA encoding a neuronal 5HT1A receptor was coinjected with atrial RNA, by serotonin (5HT). A 5HT-evoked current (I5HT) was observed in oocytes injected with ventricle RNA fractions (of 2.5-5.5 kb) and 5HT1A receptor RNA. I5HT displayed strong inward rectification with very little conductance above the K+ equilibrium potential, was highly selective for K+ over Na+, and was blocked by 5-300 µM Ba2+. I5HT was suppressed by intracellular injection of the nonhydrolyzable analog of GDP, guanosine 5'-[ß-thio]diphosphate, but not by treatment with pertussis toxin (PTX), suggesting coupling of the receptor to the G-protein-activated K+ channel via a PTX-insensitive G protein, possibly endogenously present in the oocyte. Coexpression of the subunit of a PTX-sensitive G protein, Gi2, rendered I5HT sensitive to PTX inhibition. Native oocytes displayed a constitutively active inwardly rectifying K+ current with a lower sensitivity to Ba2+ block; expression of a similar current was also directed by atrial or ventricle RNA of 1.5-3 kb. Xenopus oocytes may be employed for cloning of the G-protein-activated K+ channel cDNA and for studying the coupling between this channel and G proteins
A G protein-gated K channel is activated via beta 2-adrenergic receptors and G beta gamma subunits in Xenopus oocytes
In many tissues, inwardly rectifying K channels are coupled to seven- helix receptors via the Gi/Go family of heterotrimeric G proteins. This activation proceeds at least partially via G beta gamma subunits. These experiments test the hypothesis that G beta gamma subunits activate the channel even if released from other classes of heterotrimeric G proteins. The G protein-gated K channel from rat atrium, KGA/GIRK1, was expressed in Xenopus oocytes with various receptors and G proteins. The beta 2-adrenergic receptor (beta 2AR), a Gs-linked receptor, activated large KGA currents when the alpha subunit, G alpha s, was also overexpressed. Although G alpha s augmented the coupling between beta 2AR and KGA, G alpha s also inhibited the basal, agonist-independent activity of KGA. KGA currents stimulated via beta 2AR activated, deactivated, and desensitized more slowly than currents stimulated via Gi/Go-linked receptors. There was partial occlusion between currents stimulated via beta 2AR and the m2 muscarinic receptor (a Gi/Go-linked receptor), indicating some convergence in the mechanism of activation by these two receptors. Although stimulation of beta 2AR also activates adenylyl cyclase and protein kinase A, activation of KGA via beta 2AR is not mediated by this second messenger pathway, because direct elevation of intracellular cAMP levels had no effect on KGA currents. Experiments with other coexpressed G protein alpha and beta gamma subunits showed that (a) a constitutively active G alpha s mutant did not suppress basal KGA currents and was only partially as effective as wild type G alpha s in coupling beta 2AR to KGA, and (b) beta gamma subunits increased basal KGA currents. These results reinforce present concepts that beta gamma subunits activate KGA, and also suggest that beta gamma subunits may provide a link between KGA and receptors not previously known to couple to inward rectifiers
Regulation of Maximal Open Probability Is a Separable Function of Cavβ Subunit in L-type Ca2+ Channel, Dependent on NH2 Terminus of α1C (Cav1.2α)
β subunits (Cavβ) increase macroscopic currents of voltage-dependent Ca2+ channels (VDCC) by increasing surface expression and modulating their gating, causing a leftward shift in conductance–voltage (G-V) curve and increasing the maximal open probability, Po,max. In L-type Cav1.2 channels, the Cavβ-induced increase in macroscopic current crucially depends on the initial segment of the cytosolic NH2 terminus (NT) of the Cav1.2α (α1C) subunit. This segment, which we term the “NT inhibitory (NTI) module,” potently inhibits long-NT (cardiac) isoform of α1C that features an initial segment of 46 amino acid residues (aa); removal of NTI module greatly increases macroscopic currents. It is not known whether an NTI module exists in the short-NT (smooth muscle/brain type) α1C isoform with a 16-aa initial segment. We addressed this question, and the molecular mechanism of NTI module action, by expressing subunits of Cav1.2 in Xenopus oocytes. NT deletions and chimeras identified aa 1–20 of the long-NT as necessary and sufficient to perform NTI module functions. Coexpression of β2b subunit reproducibly modulated function and surface expression of α1C, despite the presence of measurable amounts of an endogenous Cavβ in Xenopus oocytes. Coexpressed β2b increased surface expression of α1C approximately twofold (as demonstrated by two independent immunohistochemical methods), shifted the G-V curve by ∼14 mV, and increased Po,max 2.8–3.8-fold. Neither the surface expression of the channel without Cavβ nor β2b-induced increase in surface expression or the shift in G-V curve depended on the presence of the NTI module. In contrast, the increase in Po,max was completely absent in the short-NT isoform and in mutants of long-NT α1C lacking the NTI module. We conclude that regulation of Po,max is a discrete, separable function of Cavβ. In Cav1.2, this action of Cavβ depends on NT of α1C and is α1C isoform specific
Rat brain 5-HT_(1C) receptors are encoded by a 5-6 kbase mRNA size class and are functionally expressed in injected Xenopus oocytes
Injection of rat brain RNA into Xenopus laevis oocytes induces synthesis of receptors that show an electrophysiological response to bath application of serotonin. While there are at least 4 pharmacologically distinct subtypes of 5-HT binding sites in the rat brain, we find that the pharmacological characteristics of the predominant electrophysiologically active receptor synthesized in Xenopus oocytes are most consistent with those of the 5-HT_(1C) subtype. Additional electrophysiologically active 5-HT receptor types could not be detected. Injection of mRNA isolated from a number of rat brain regions shows that the choroid plexus is particularly enriched for 5-HT_(1C) mRNA. Oocytes injected with RNA isolated from this region respond 16 or 8 times more strongly to serotonin than do oocytes injected with RNA isolated from cortex or substantia nigra, respectively. In addition, by fractionation of rat brain mRNA through agarose gels, we have identified a single RNA size class of about 5–6 kbase that encodes this serotonin receptor
Rat brain 5-HT_(1C) receptors are encoded by a 5-6 kbase mRNA size class and are functionally expressed in injected Xenopus oocytes
Injection of rat brain RNA into Xenopus laevis oocytes induces synthesis of receptors that show an electrophysiological response to bath application of serotonin. While there are at least 4 pharmacologically distinct subtypes of 5-HT binding sites in the rat brain, we find that the pharmacological characteristics of the predominant electrophysiologically active receptor synthesized in Xenopus oocytes are most consistent with those of the 5-HT_(1C) subtype. Additional electrophysiologically active 5-HT receptor types could not be detected. Injection of mRNA isolated from a number of rat brain regions shows that the choroid plexus is particularly enriched for 5-HT_(1C) mRNA. Oocytes injected with RNA isolated from this region respond 16 or 8 times more strongly to serotonin than do oocytes injected with RNA isolated from cortex or substantia nigra, respectively. In addition, by fractionation of rat brain mRNA through agarose gels, we have identified a single RNA size class of about 5–6 kbase that encodes this serotonin receptor
Anion-Sensitive Regions of L-Type CaV1.2 Calcium Channels Expressed in HEK293 Cells
L-type calcium currents (ICa) are influenced by changes in extracellular chloride, but sites of anion effects have not been identified. Our experiments showed that CaV1.2 currents expressed in HEK293 cells are strongly inhibited by replacing extracellular chloride with gluconate or perchlorate. Variance-mean analysis of ICa and cell-attached patch single channel recordings indicate that gluconate-induced inhibition is due to intracellular anion effects on Ca2+ channel open probability, not conductance. Inhibition of CaV1.2 currents produced by replacing chloride with gluconate was reduced from ∼75%–80% to ∼50% by omitting β subunits but unaffected by omitting α2δ subunits. Similarly, gluconate inhibition was reduced to ∼50% by deleting an α1 subunit N-terminal region of 15 residues critical for β subunit interactions regulating open probability. Omitting β subunits with this mutant α1 subunit did not further diminish inhibition. Gluconate inhibition was unchanged with expression of different β subunits. Truncating the C terminus at AA1665 reduced gluconate inhibition from ∼75%–80% to ∼50% whereas truncating it at AA1700 had no effect. Neutralizing arginines at AA1696 and 1697 by replacement with glutamines reduced gluconate inhibition to ∼60% indicating these residues are particularly important for anion effects. Expressing CaV1.2 channels that lacked both N and C termini reduced gluconate inhibition to ∼25% consistent with additive interactions between the two tail regions. Our results suggest that modest changes in intracellular anion concentration can produce significant effects on CaV1.2 currents mediated by changes in channel open probability involving β subunit interactions with the N terminus and a short C terminal region
- …
