15 research outputs found

    Power-law corrections to black-hole entropy via entanglement

    Full text link
    We consider the entanglement between quantum field degrees of freedom inside and outside the horizon as a plausible source of black-hole entropy. We examine possible deviations of black hole entropy from area proportionality. We show that while the area law holds when the field is in its ground state, a correction term proportional to a fractional power of area results when the field is in a superposition of ground and excited states. We compare our results with the other approaches in the literature.Comment: 10 pages, 5 figures, to appear in the Proceedings of "BH2, Dynamics and Thermodynamics of Blackholes and Naked Singularities", May 10-12 2007, Milano, Italy; conference website: http://www.mate.polimi.it/bh2

    Where are the black hole entropy degrees of freedom ?

    Get PDF
    Understanding the area-proportionality of black hole entropy (the `Area Law') from an underlying fundamental theory has been one of the goals of all models of quantum gravity. A key question that one asks is: where are the degrees of freedom giving rise to black hole entropy located? Taking the point of view that entanglement between field degrees of freedom inside and outside the horizon can be a source of this entropy, we show that when the field is in its ground state, the degrees of freedom near the horizon contribute most to the entropy, and the area law is obeyed. However, when it is in an excited state, degrees of freedom far from the horizon contribute more significantly, and deviations from the area law are observed. In other words, we demonstrate that horizon degrees of freedom are responsible for the area law.Comment: 5 pages, 3 eps figures, uses Revtex4, References added, Minor changes to match published versio

    Where are the degrees of freedom responsible for black hole entropy?

    Full text link
    Considering the entanglement between quantum field degrees of freedom inside and outside the horizon as a plausible source of black hole entropy, we address the question: {\it where are the degrees of freedom that give rise to this entropy located?} When the field is in ground state, the black hole area law is obeyed and the degrees of freedom near the horizon contribute most to the entropy. However, for excited state, or a superposition of ground state and excited state, power-law corrections to the area law are obtained, and more significant contributions from the degrees of freedom far from the horizon are shown.Comment: 6 pages, 4 figures, Invited talk at Theory Canada III, Edmonton, Alberta, Canada, June 16, 200

    Where are the degrees of freedom responsible for black hole entropy?

    Get PDF
    Sherpa Romeo green journal. Permission to archive author manuscript.Considering the entanglement between quantum field degrees of freedom inside and outside the horizon as a plausible source of black hole entropy, we address the question: where are the degrees of freedom that give rise to this entropy located? When the field is in ground state, the black hole area law is obeyed and the degrees of freedom near the horizon contribute most to the entropy. However, for excited state, or a superposition of ground state and excited state, power-law corrections to the area law are obtained, and more significant contributions from the degrees of freedom far from the horizon are shown.N

    Power-law corrections to entanglement entropy of horizons

    Get PDF
    Sherpa Romeo green journal. Permission to archive final published version.We re-examine the idea that the origin of black-hole entropy may lie in the entanglement of quantum fields between inside and outside of the horizon. Motivated by the observation that certain modes of gravitational fluctuations in a black-hole background behave as scalar fields, we compute the entanglement entropy of such a field, by tracing over its degrees of freedom inside a sphere. We show that while this entropy is proportional to the area of the sphere when the field is in its ground state, a correction term proportional to a fractional power of area results when the field is in a superposition of ground and excited states. The area law is thus recovered for large areas. Further, we identify location of the degrees of freedom that give rise to the above entropy.Ye

    Power-law corrections to entanglement entropy of horizons

    Get PDF
    We re-examine the idea that the origin of black-hole entropy may lie in the entanglement of quantum fields between inside and outside of the horizon. Motivated by the observation that certain modes of gravitational fluctuations in a black-hole background behave as scalar fields, we compute the entanglement entropy of such a field, by tracing over its degrees of freedom inside a sphere. We show that while this entropy is proportional to the area of the sphere when the field is in its ground state, a correction term proportional to a fractional power of area results when the field is in a superposition of ground and excited states. The area law is thus recovered for large areas. Further, we identify location of the degrees of freedom that give rise to the above entropy.Comment: 16 pages, 6 figures, to appear in Phys. Rev.

    Entanglement Entropy from a Holographic Viewpoint

    Get PDF
    The entanglement entropy has been historically studied by many authors in order to obtain quantum mechanical interpretations of the gravitational entropy. The discovery of AdS/CFT correspondence leads to the idea of holographic entanglement entropy, which is a clear solution to this important problem in gravity. In this article, we would like to give a quick survey of recent progresses on the holographic entanglement entropy. We focus on its gravitational aspects, so that it is comprehensible to those who are familiar with general relativity and basics of quantum field theory.Comment: Latex, 30 pages, invited review for Classical and Quantum Gravity, minor correction

    Holographic Entanglement Entropy: An Overview

    Full text link
    In this article, we review recent progresses on the holographic understandings of the entanglement entropy in the AdS/CFT correspondence. After reviewing the general idea of holographic entanglement entropy, we will explain its applications to confinement/deconfinement phase transitions, black hole entropy and covariant formulation of holography.Comment: 52 pages, Invited review article for a special issue "Entanglement entropy in extended quantum systems" in Journal of Physics A, edited by P.Calabrese, J. Cardy and B. Doyon; (v2) references adde
    corecore