5 research outputs found

    Experimental Investigation of Biodiesel Production from Waste Mustard Oil

    No full text
    The demand for petroleum is increasing with each passing day. This may be attributed to the limited resources of petroleum crude. Hence there is an urgent need of developing alternative energy sources to meet the ever increasing energy demand. Biofuels are currently being considered from multidimensional perspectives, i.e. depleting fossil fuels, resources, environmental health, energy security and agricultural economy. The two most common types of biofuels are ethanol and biodiesel [1]. Biodiesel is a promising alternative fuel to replace petroleum-based diesel that is produced primarily from vegetable oil, animal fat and waste mustard oil. The vegetable oils which are rich in oxygen can be used as future alternate fuels for the operation of diesel engine [2]. Biodiesel is produced from wasted mustard oil through alkali catalyzed transesterification process. Biodiesel is simple to use, biodegradable, non-toxic and essentially free of sulfur and aromatics. Physical properties like density, flash point, kinematic viscosity, cloud point and pour point were found out for biodiesel produced from waste mustard oil. The same characteristic study was also carried out for conventional diesel fuel and used as a baseline for comparison. The values obtained from waste mustard oil ethyl ester (biodiesel) is closely matched with the conventional diesel fuel and it can be used in diesel engine without any modification. Biodiesel can be used in pure form (B100) or may be blended with petroleum diesel at any concentration in most injection pump diesel engines

    Numerical investigation of a porous media combustor in a small-scale diesel engine

    No full text
    The application of porous media in compression ignition engines has significant effects on its combustion behavior. In this work, a Computational Fluid Dynamics (CFD) analysis of combustion in diesel engine is performed for 100% load, and the effects of porous media addition in the combustion chamber are quantified. With a porosity of 66.7%, silicon carbide is applied as porous media of cylindrical shape in the modified piston bowl in the conventional engine. The combustion analysis outputs include average cylinder-pressure, temperature; Nitrogen Oxides (NOx), mean mixture fraction, turbulent kinetic energy, total energy and modified Peclet number. The results of the CFD study for the cases of non-porous media are validated against the performed baseline experimental analysis, whereas porous media predictions are compared to the state-of-the-art studies available in the literature. In presence of porous media, the average peak pressure and temperature are found to drop by similar to 26 bar and similar to 550 K, respectively, as compared to that of non-porous media. Furthermore, NOx emissions are significantly reduced up to 97%. The generation of turbulent kinetic energy is enhanced by 86% for PM leading to an increment of similar to 36% in the thermal energy conversion than without a porous media. (C) 2019 Elsevier Ltd. All rights reserved

    To Achieve Higher Security in Automatic Variable Key Technique towards Optimum Data Transfer with Noise Burst in Cryptosystem

    No full text
    In this manuscript, we have proposed new key generation techniques with noise burst based on established variable key generation techniques. To verify the true randomness of the proposed techniques, we have tested the randomness of successive generated keys by using National Institute of Standards and Technology (NIST) statistical tool and tested with the standard algorithm RC4 and proved that the generated keys are truly random. The proposed techniques provide maximum level of security as compared to those related existing techniques as the newly generated keys are more random. Due to the enhanced randomness, it can be stated that proposed techniques provide more security in real time applications
    corecore