2,016 research outputs found

    A Conformal Mapping Based Fractional Order Approach for Sub-optimal Tuning of PID Controllers with Guaranteed Dominant Pole Placement

    Get PDF
    A novel conformal mapping based Fractional Order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PI{\lambda}D{\mu}) controller have been approximated in this paper vis-\`a-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PI{\lambda}D{\mu} controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.Comment: 23 pages, 7 figures, in press; Communications in Nonlinear Science and Numerical Simulations, 201

    Discovery of highly spin-polarized conducting surface states in the strong spin-orbit coupling semiconductor Sb2_2Se3_3

    Full text link
    Majority of the A2_2B3_3 type chalcogenide systems with strong spin-orbit coupling, like Bi2_2Se3_3, Bi2_2Te3_3 and Sb2_2Te3_3 etc., are topological insulators. One important exception is Sb2_2Se3_3, where a topological non-trivial phase was argued to be possible under ambient conditions, but such a phase could be detected to exist only under pressure. In this Letter, we show that like Bi2_2Se3_3, Sb2_2Se3_3, displays generation of highly spin-polarized current under mesoscopic superconducting point contacts as measured by point contact Andreev reflection spectroscopy. In addition, we observe a large negative and anisotropic magnetoresistance in Sb2_2Se3_3, when the field is rotated in the basal plane. However, unlike in Bi2_2Se3_3, in case of Sb2_2Se3_3 a prominent quasiparticle interference (QPI) pattern around the defects could be obtained in STM conductance imaging. Thus, our experiments indicate that Sb2_2Se3_3 is a regular band insulator under ambient conditions, but due to it's high spin-orbit coupling, non-trivial spin-texture exists on the surface and the system could be on the verge of a topological insulator phase.Comment: 5 pages, 4 figures, supplemental material not include

    Insights of Breast Cancer and Barriers to its Therapy

    Get PDF
    Breast cancer is the most common cancer across the globe occurring commonly in women population, and it is one of the main causes of mortality in women. In 2018, 1,62,468 new cases and 87,090 death cases of breast cancer were registered in India. In these recent years, lots of studies were conducted in breast cancer related to treatment and management, but in spite of getting so much advancement in the treatment of breast cancer still, the mortality rate of women is increasing day by day. Numerous factors are acting as barriers or challenges in breast cancer preventive therapy. It includes lack of knowledge regarding the treatment of cancer and patient getting insecure about treatment, fear of having side effects, cost of treatment and the efficacy of the drugs being prescribed. The study intended to determine the perceived insights and barriers to treatment of breast cancer

    Immunogenic Modulations Induced by Prospective Anti-Malarial Herbal Extracts in Murine Model

    Get PDF
    Keeping in view the ever increasing problem of drug resistance and affordability of the antimalarial drugs by the poor mass, herbal medicines can become an important and alternative sustainable strategy for malaria treatment. Aqueous extracts of three Himalayan herbs― _Equisetum ravense_, _Artemisia vulgaris_ and _Centella asiatica_, with reported antimalarial property were screened for clinical efficacy against a local strain of _Plasmodium vivax_ antigen in murine model. _E. arvense_ extract was consistent in boosting phagocytic activity, nitric oxide generation, acid phosphatase and alkaline phosphatase activities in the peritoneal macrophages. The effectiveness of the rest herbals was discrete. A need for further detailed investigation to evaluate the clinical efficacy of these herbals seems essential

    Design of a Fractional Order Phase Shaper for Iso-damped Control of a PHWR under Step-back Condition

    Get PDF
    Phase shaping using fractional order (FO) phase shapers has been proposed by many contemporary researchers as a means of producing systems with iso-damped closed loop response due to a stepped variation in input. Such systems, with the closed loop damping remaining invariant to gain changes can be used to produce dead-beat step response with only rise time varying with gain. This technique is used to achieve an active step-back in a Pressurized Heavy Water Reactor (PHWR) where it is desired to change the reactor power to a pre-determined value within a short interval keeping the power undershoot as low as possible. This paper puts forward an approach as an alternative for the present day practice of a passive step-back mechanism where the control rods are allowed to drop during a step-back action by gravity, with release of electromagnetic clutches. The reactor under a step-back condition is identified as a system using practical test data and a suitable Proportional plus Integral plus Derivative (PID) controller is designed for it. Then the combined plant is augmented with a phase shaper to achieve a dead-beat response in terms of power drop. The fact that the identified static gain of the system depends on the initial power level at which a step-back is initiated, makes this application particularly suited for using a FO phase shaper. In this paper, a model of a nuclear reactor is developed for a control rod drop scenario involving rapid power reduction in a 500MWe Canadian Deuterium Uranium (CANDU) reactor using AutoRegressive Exogenous (ARX) algorithm. The system identification and reduced order modeling are developed from practical test data. For closed loop active control of the identified reactor model, the fractional order phase shaper along with a PID controller is shown to perform better than the present Reactor Regulating System (RRS) due to its iso-damped nature.Comment: 11 pages, 10figure

    Fractional Order Phase Shaper Design with Routh's Criterion for Iso-damped Control System

    Get PDF
    Phase curve of an open loop system is flat in nature if the derivative of phase with respect to frequency is zero. With a flat phase curve, the corresponding closed-loop system exhibits an iso-damped property i.e. maintains constant overshoot with the change of gain and with other parametric variations. In recent past application, fractional order (FO) phase shapers have been proposed by contemporary researchers to achieve enhanced parametric robustness. In this paper, a simple Routh tabulation based methodology is proposed to design an appropriate FO phase shaper to achieve phase flattening in a control loop, comprising a system, controlled by a classical PID controller. The method is demonstrated using MATLAB simulation of a second order DC motor plant and also a first order with time delay system.Comment: 4 pages, 4 figures; Proceedings of INDICON 2009 - An IEEE India Council Conference, art. no. 5409434, Dec. 2009, Gujara

    Australasian Pigeon Circoviruses Demonstrate Natural Spillover Infection

    Get PDF
    Pigeon circovirus (PiCV) is considered to be genetically diverse, with a relatively small circular single-stranded DNA genome of 2 kb that encodes for a capsid protein (Cap) and a replication initiator protein (Rep). Australasia is known to be the origin of diverse species of the Order Columbiformes, but limited data on the PiCV genome sequence has hindered phylogeographic studies in this species. To fill this gap, this study was conducted to investigate PiCV in 118 characteristic samples from different birds across Australia using PCR and sequencing. Eighteen partial PiCV Rep sequences and one complete PiCV genome sequence were recovered from reservoir and aberrant hosts. Phylogenetic analyses revealed that PiCV circulating in Australia was scattered across three different subclades. Importantly, one subclade dominated within the PiCV sequenced from Australia and Poland, whereas other PiCV sequenced in this study were more closely related to the PiCV sequenced from China, USA and Japan. In addition, PiCV Rep sequences obtained from clinically affected plumed whistling duck, blue billed duck and Australian magpie demonstrated natural spillover of PiCV unveiled host generalist characteristics of the pigeon circovirus. These findings indicate that PiCV genomes circulating in Australia lack host adapted population structure but demonstrate natural spillover infection
    corecore