44,643 research outputs found
Effective Actions for 0+1 Dimensional Scalar QED and its SUSY Generalization at
We compute the effective actions for the 0+1 dimensional scalar field
interacting with an Abelian gauge background, as well as for its supersymmetric
generalization at finite temperature.Comment: 5 pages, Latex fil
Thermodynamic properties of Holstein polarons and the effects of disorder
The ground state and finite temperature properties of polarons are studied
considering a two-site and a four-site Holstein model by exact diagonalization
of the Hamiltonian. The kinetic energy, Drude weight, correlation functions
involving charge and lattice deformations, and the specific heat have been
evaluated as a function of electron-phonon (e-ph) coupling strength and
temperature. The effects of site diagonal disorder on the above properties have
been investigated. The disorder is found to suppress the kinetic energy and the
Drude weight, reduces the spatial extension of the polaron, and makes the
large-to-small polaron crossover smoother. Increasing temperature also plays
similar role. For strong coupling the kinetic energy arises mainly from the
incoherent hopping processes owing to the motion of electrons within the
polaron and is almost independent of the disorder strength. From the coherent
and incoherent contributions to the kinetic energy, the temperature above which
the incoherent part dominates is determined as a function of e-ph coupling
strength.Comment: 17 pages. 17 figure
One Table to Count Them All: Parallel Frequency Estimation on Single-Board Computers
Sketches are probabilistic data structures that can provide approximate
results within mathematically proven error bounds while using orders of
magnitude less memory than traditional approaches. They are tailored for
streaming data analysis on architectures even with limited memory such as
single-board computers that are widely exploited for IoT and edge computing.
Since these devices offer multiple cores, with efficient parallel sketching
schemes, they are able to manage high volumes of data streams. However, since
their caches are relatively small, a careful parallelization is required. In
this work, we focus on the frequency estimation problem and evaluate the
performance of a high-end server, a 4-core Raspberry Pi and an 8-core Odroid.
As a sketch, we employed the widely used Count-Min Sketch. To hash the stream
in parallel and in a cache-friendly way, we applied a novel tabulation approach
and rearranged the auxiliary tables into a single one. To parallelize the
process with performance, we modified the workflow and applied a form of
buffering between hash computations and sketch updates. Today, many
single-board computers have heterogeneous processors in which slow and fast
cores are equipped together. To utilize all these cores to their full
potential, we proposed a dynamic load-balancing mechanism which significantly
increased the performance of frequency estimation.Comment: 12 pages, 4 figures, 3 algorithms, 1 table, submitted to EuroPar'1
A Langevin analysis of fundamental noise limits in Coherent Anti-Stokes Raman Spectroscopy
We use a Langevin approach to analyze the quantum noise in Coherent
Anti-Stokes Raman Spectroscopy (CARS) in several experimental scenarios: with
continuous wave input fields acting simultaneously and with fast sequential
pulsed lasers where one field scatters off the coherence generated by other
fields; and for interactions within a cavity and in free space. In all the
cases, the signal as well as the quantum noise due to spontaneous decay and
decoherence in the medium are shown to be described by the same general
expression. Our theory in particular shows that for short interaction times,
the medium noise is not important and the efficiency is limited only by the
intrinsic quantum nature of the photon. We obtain fully analytic results
\emph{without} making an adiabatic approximation, the fluctuations of the
medium and the fields are self solved consistently.Comment: 12 pages, 1 figur
- …