1,086 research outputs found

    Linear Stability of Equilibrium Points in the Generalized Photogravitational Chermnykh's Problem

    Full text link
    The equilibrium points and their linear stability has been discussed in the generalized photogravitational Chermnykh's problem. The bigger primary is being considered as a source of radiation and small primary as an oblate spheroid. The effect of radiation pressure has been discussed numerically. The collinear points are linearly unstable and triangular points are stable in the sense of Lyapunov stability provided Ό<ΌRouth=0.0385201\mu< \mu_{Routh}=0.0385201. The effect of gravitational potential from the belt is also examined. The mathematical properties of this system are different from the classical restricted three body problem

    On a coordinate independent description of string worldsheet theory

    Full text link
    We study worldsheet conformal invariance for bosonic string propagating in a curved background using the hamiltonian formalism. In order to formulate the problem in a background independent manner we first rewrite the worldsheet theory in a language where it describes a single particle moving in an infinite-dimensional curved spacetime. This language is developed at a formal level without regularizing the infinite-dimensional traces. Then we adopt DeWitt's (Phys.Rev.85:653-661,1952) coordinate independent formulation of quantum mechanics in the present context. Given the expressions for the classical Virasoro generators, this procedure enables us to define the coordinate invariant quantum analogues which we call DeWitt-Virasoro generators. This framework also enables us to calculate the invariant matrix elements of an arbitrary operator constructed out of the DeWitt-Virasoro generators between two arbitrary scalar states. Using these tools we further calculate the DeWitt-Virasoro algebra in spin-zero representation. The result is given by the Witt algebra with additional anomalous terms that vanish for Ricci-flat backgrounds. Further analysis need to be performed in order to precisely relate this with the beta function computation of Friedan and others. Finally, we explain how this analysis improves the understanding of showing conformal invariance for certain pp-wave that has been recently discussed using hamiltonian framework.Comment: 32 pages, some reorganization for more elaborate explanation, no change in conclusio

    Dephasing and Metal-Insulator Transition

    Full text link
    The metal-insulator transition (MIT) observed in two-dimensional (2D) systems is apparently contradictory to the well known scaling theory of localization. By investigating the conductance of disordered one-dimensional systems with a finite phase coherence length, we show that by changing the phase coherence length or the localization length, it is possible to observe the transition from insulator-like behavior to metal-like behavior, and the transition is a crossover between the quantum and classical regimes. The resemblance between our calculated results and the experimental findings of 2D MIT suggests that the observed metallic phase could be the result of a finite dephasing rate.Comment: 10 figures, to be published in Phys. Rev. B63, Jan. 15, (2000

    Open-closed duality and Double Scaling

    Get PDF
    Nonperturbative terms in the free energy of Chern-Simons gauge theory play a key role in its duality to the closed topological string. We show that these terms are reproduced by performing a double scaling limit near the point where the perturbation expansion diverges. This leads to a derivation of closed string theory from this large-N gauge theory along the lines of noncritical string theories. We comment on the possible relevance of this observation to the derivation of superpotentials of asymptotically free gauge theories and its relation to infrared renormalons.Comment: 10 pages, LaTe

    The algebra of flat currents for the string on AdS_5 x S^5 in the light-cone gauge

    Full text link
    We continue the program initiated in hep-th/0411200 and calculate the algebra of the flat currents for the string on AdS_5 x S^5 background in the light-cone gauge with kappa-symmetry fixed. We find that the algebra has a closed form and that the non-ultralocal terms come with a weight factor e^{\phi} that depends on the radial AdS_5 coordinate. Based on results in two-dimensional sigma models coupled to gravity via the dilaton field, this suggests that the algebra of transition matrices in the present case is likely to be unambigous.Comment: 27 pages, references added, version published in JHE

    Resonant Enhancement of Inelastic Light Scattering in the Fractional Quantum Hall Regime at Μ=1/3\nu=1/3

    Full text link
    Strong resonant enhancements of inelastic light scattering from the long wavelength inter-Landau level magnetoplasmon and the intra-Landau level spin wave excitations are seen for the fractional quantum Hall state at Îœ=1/3\nu = 1/3. The energies of the sharp peaks (FWHM â‰Č0.2meV\lesssim 0.2meV) in the profiles of resonant enhancement of inelastic light scattering intensities coincide with the energies of photoluminescence bands assigned to negatively charged exciton recombination. To interpret the observed enhancement profiles, we propose three-step light scattering mechanisms in which the intermediate resonant transitions are to states with charged excitonic excitations.Comment: 5 pages, 5 figure

    Propagators and WKB-exactness in the plane wave limit of AdSxS

    Full text link
    Green functions for the scalar, spinor and vector fields in a plane wave geometry arising as a Penrose limit of AdS×SAdS\times S are obtained. The Schwinger-DeWitt technique directly gives the results in the plane wave background, which turns out to be WKB-exact. Therefore the structural similarity with flat space results is unveiled. In addition, based on the local character of the Penrose limit, it is claimed that for getting the correct propagators in the limit one can rely on the first terms of the direct geodesic contribution in the Schwinger-DeWitt expansion of the original propagators . This is explicitly shown for the Einstein Static Universe, which has the same Penrose limit as AdS×SAdS\times S with equal radii, and for a number of other illustrative cases.Comment: 18 pages, late

    Processing of aluminum-graphite particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Journal of Materials Engineering and Performance 18(9) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting (MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated. The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (e) is obtained compared with composites produced by conventional processes.EPSR

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure
    • 

    corecore