27,188 research outputs found

    Settlement rehabilitation of a 35 year old building : case study integrated with analysis and implementation

    Get PDF
    This paper presents a rehabilitation project concerning the settlement of a 35 year old building. The foundation system of the northwest wing of the building consists of strip footings and slabon-grade. Differential settlement results in significant cracking of the masonry partition walls located on the footing and hence rehabilitation of the footing is required to stabilize the foundation system. Geotechnical and structural investigations are conducted, including site borings and analytical modeling based on one-dimensional consolidation theory that is incorporated into a finite element analysis. The predictive model exhibits that the differential settlement does not cause noticeable distress for the primary structural members, whereas the continued settlement affects use of the building. Site implementation is performed with the pushpile method to terminate the continuous settlement of the foundation

    Spin Injection and Detection via the Anomalous Spin Hall Effect in a Ferromagnetic Metal

    Get PDF
    We report a novel spin injection and detection mechanism via the anomalous Hall effect in a ferromagnetic metal. The anomalous spin Hall effect (ASHE) refers to the transverse spin current generated within the ferromagnet. We utilize the ASHE and its reciprocal effect to electrically inject and detect magnons in a magnetic insulator in a non-local geometry. Our experiments reveal that permalloy can have a higher spin injection and detection efficiency to that of platinum, owing to the ASHE. We also demonstrate the tunability of the ASHE via the orientation of the permalloy magnetization, thus creating new possibilities for spintronic applications

    Effects of two dimensional plasmons on the tunneling density of states

    Full text link
    We show that gapless plasmons lead to a universal (δν(ϵ)/νϵ/EF)(\delta\nu(\epsilon)/\nu\propto |\epsilon|/E_F) correction to the tunneling density of states of a clean two dimensional Coulomb interacting electron gas. We also discuss a counterpart of this effect in the "composite fermion metal" which forms in the presence of a quantizing perpendicular magnetic field corresponding to the half-filled Landau level. We argue that the latter phenomenon might be relevant for deviations from a simple scaling observed by A.Chang et al in the tunneling IVI-V characteristics of Quantum Hall liquids.Comment: 12 pages, Latex, NORDITA repor

    Electric field driven donor-based charge qubits in semiconductors

    Full text link
    We investigate theoretically donor-based charge qubit operation driven by external electric fields. The basic physics of the problem is presented by considering a single electron bound to a shallow-donor pair in GaAs: This system is closely related to the homopolar molecular ion H_2^+. In the case of Si, heteropolar configurations such as PSb^+ pairs are also considered. For both homopolar and heteropolar pairs, the multivalley conduction band structure of Si leads to short-period oscillations of the tunnel-coupling strength as a function of the inter-donor relative position. However, for any fixed donor configuration, the response of the bound electron to a uniform electric field in Si is qualitatively very similar to the GaAs case, with no valley quantum interference-related effects, leading to the conclusion that electric field driven coherent manipulation of donor-based charge qubits is feasible in semiconductors

    Mass Outflow Rate From Accretion Discs around Compact Objects

    Full text link
    We compute mass outflow rates from accretion disks around compact objects, such as neutron stars and black holes. These computations are done using combinations of exact transonic inflow and outflow solutions which may or may not form standing shock waves. Assuming that the bulk of the outflow is from the effective boundary layers of these objects, we find that the ratio of the outflow rate and inflow rate varies anywhere from a few percent to even close to a hundred percent (i.e., close to disk evacuation case) depending on the initial parameters of the disk, the degree of compression of matter near the centrifugal barrier, and the polytropic index of the flow. Our result, in general, matches with the outflow rates obtained through a fully time-dependent numerical simulation. In some region of the parameter space when the standing shock does not form, our results indicate that the disk may be evacuated and may produce quiescence states.Comment: 30 Latex pages and 13 figures. crckapb.sty; Published in Class. Quantum Grav. Vol. 16. No. 12. Pg. 387

    Ferromagnetic and random spin ordering in diluted magnetic semiconductors

    Full text link
    In a diluted magnetic semiconductor system, the exchange interaction between magnetic impurities has two independent components: a direct antiferromagnetic interaction and a ferromagnetic interaction mediated by charge carriers. Depending on the system parameters, the ground state of the system may be ordered either ferromagnetically or randomly. In this paper we use percolation theory to find the ferromagnetic transition temperature and the location of the quantum critical point separating the ferromagnetic phase and a valence bond glass phase.Comment: 9 pages, 2 figures, a reference adde

    Spin-polarized transport in inhomogeneous magnetic semiconductors: theory of magnetic/nonmagnetic p-n junctions

    Get PDF
    A theory of spin-polarized transport in inhomogeneous magnetic semiconductors is developed and applied to magnetic/nonmagnetic p-n junctions. Several phenomena with possible spintronic applications are predicted, including spinvoltaic effect, spin valve effect, and giant magnetoresistance. It is demonstrated that only nonequilibrium spin can be injected across the space-charge region of a p-n junction, so that there is no spin injection (or extraction) at low bias.Comment: Minor Revisions. To appear in Phys. Rev. Let

    Exact semi-relativistic model for ionization of atomic hydrogen by electron impact

    Full text link
    We present a semi-relativistic model for the description of the ionization process of atomic hydrogen by electron impact in the first Born approximation by using the Darwin wave function to describe the bound state of atomic hydrogen and the Sommerfeld-Maue wave function to describe the ejected electron. This model, accurate to first order in Z/cZ/c in the relativistic correction, shows that, even at low kinetic energies of the incident electron, spin effects are small but not negligible. These effects become noticeable with increasing incident electron energies. All analytical calculations are exact and our semi-relativistic results are compared with the results obtained in the non relativistic Coulomb Born Approximation both for the coplanar asymmetric and the binary coplanar geometries.Comment: 8 pages, 6 figures, Revte
    corecore