5 research outputs found

    A Framework and Architecture for Multi-Robot Coordination

    Get PDF
    In this paper, we present a framework and the software architecture for the deployment of multiple autonomous robots in an unstructured and unknown environment with applications ranging from scouting and reconnaissance, to search and rescue and manipulation tasks. Our software framework provides the methodology and the tools that enable robots to exhibit deliberative and reactive behaviors in autonomous operation, to be reprogrammed by a human operator at run-time, and to learn and adapt to unstructured, dynamic environments and new tasks, while providing performance guarantees. We demonstrate the algorithms and software on an experimental testbed that involves a team of car-like robots using a single omnidirectional camera as a sensor without explicit use of odometry

    Using Smartphone Sensors for Improving Energy Expenditure Estimation.

    No full text
    Energy expenditure (EE) estimation is an important factor in tracking personal activity and preventing chronic diseases, such as obesity and diabetes. Accurate and real-time EE estimation utilizing small wearable sensors is a difficult task, primarily because the most existing schemes work offline or use heuristics. In this paper, we focus on accurate EE estimation for tracking ambulatory activities (walking, standing, climbing upstairs, or downstairs) of a typical smartphone user. We used built-in smartphone sensors (accelerometer and barometer sensor), sampled at low frequency, to accurately estimate EE. Using a barometer sensor, in addition to an accelerometer sensor, greatly increases the accuracy of EE estimation. Using bagged regression trees, a machine learning technique, we developed a generic regression model for EE estimation that yields upto 96% correlation with actual EE. We compare our results against the state-of-the-art calorimetry equations and consumer electronics devices (Fitbit and Nike+ FuelBand). The newly developed EE estimation algorithm demonstrated superior accuracy compared with currently available methods. The results were calibrated against COSMED K4b2 calorimeter readings

    George Pappas

    No full text
    In this paper, we present a framework and the software architecture for the deployment of multiple autonomous robots in an unstructured and unknown environment, with applications ranging from scouting and reconnaissance, to search and rescue, to manipulation tasks, to cooperative localization and mapping, and formation control. Our software framework allows a modular and hierarchical approach to programming deliberative and reactive behaviors in autonomous operation. Formal definitions for sequential composition, hierarchical composition, and parallel composition allow the bottom-up devel

    A Vision-Based Formation Control Framework

    Get PDF
    We describe a framework for cooperative control of a group of nonholonomic mobile robots that allows us to build complex systems from simple controllers and estimators. The resultant modular approach is attractive because of the potential for reusability. Our approach to composition also guarantees stability and convergence in a wide range of tasks. There are two key features in our approach: 1) a paradigm for switching between simple decentralized controllers that allows for changes in formation; 2) the use of information from a single type of sensor, an omnidirectional camera, for all our controllers. We describe estimators that abstract the sensory information at different levels, enabling both decentralized and centralized cooperative control. Our results include numerical simulations and experiments using a testbed consisting of three nonholonomic robots
    corecore