138 research outputs found

    The ecological and evolutionary significance of browsing and grazing in savanna ungulates

    Get PDF
    Includes bibliographical references (leaves 175-208)

    Equid nutritional physiology and behavior: an evolutionary perspective

    Full text link
    Like other members of the odd-toed ungulates (the perissodactyls), equids once had a higher species diversity in the fossil record than they have today. This is generally explained in comparison to the enormous diversity of bovid ruminants. Theories on putative competitive disadvantages of equids include the use of a single toe as opposed to two toes per leg, the lack of a specific brain cooling (and hence water- saving) mechanism, longer gestation periods that delay reproductive output, and in particular digestive physiology. To date, there is no empirical support for the theory that equids fare better on low-quality forage than ruminants. In contrast to the traditional juxtaposition of hindgut and foregut fermenters, we suggest that it is more insightful to sketch the evolution of equid and ruminant digestive physiology as a case of convergence: both evolved a particularly high chewing efficacy in their respective groups, which facilitates comparatively high feed and hence energy intakes. But because the ruminant system, less based on tooth anatomy but more on a forestomach sorting mechanism, is more effective, equids depend more on high feed intakes than ruminants and may well be more susceptible to feed shortages. Arguably, the most underemphasized characteristic of equids may be that in contrast to many other herbivores includ- ing ruminants and coprophageous hindgut fermenters, equids do not use the microbial biomass growing in their gastrointestinal tract. Equids display behavioral and morphophysiological adaptations to high feed intakes, and their cranial anatomy that facilitates the cropping of forage while performing grind- ing chewing at the same time might be unique. Rather than looking for explanations how equids are better adapted to their present niches than other organisms, considering them remnants of a different morphophysiological solution may be more appropriate

    The confounding effects of source isotopic heterogeneity on consumer-diet and tissue-tissue stable isotope relationships

    Get PDF
    Stable isotope analysis of consumer tissues document patterns of resource use because data are linearly related to isotope compositions of their source(s) (i.e., food, water, etc.). Deviations in parameters estimated for these relationships can arise from variations in consumer tissue-diet spacing (Δ TS ) and the level of isotopic heterogeneity in the source(s). We present a set of simple hypotheses that distinguish between the effects of Δ TS and source isotope heterogeneity. The latter may arise via mixed diets, during tissue turnover, or by isotopic routing of dietary components. We apply these concepts to stable carbon and nitrogen isotope relationships between gut contents and body tissues of large mammal herbivores from mixed C3/C4 South African savannas and test predictions based on the compound- and/or time-specific data archived within each material. Predicted effects of source isotope heterogeneity are readily detected in carbon isotope relationships between materials representing different time periods or comprising bulk versus protein-only diet components. Differences in Δ TS of carbon isotopes across mammal herbivore species with very different feeding niches (and diet isotope compositions) are likely to be small or non-existent in these habitats. Variations in Δ TS estimated for nitrogen isotopes are much greater, leading to inconsistencies that cannot be explained by diet or trophic level effects alone. The effects of source heterogeneity on isotopic relationships generate numerical artefacts that have been misinterpreted as variations in Δ TS . We caution against generalized application of hypotheses based on assumptions of source isotopic homogeneity, even for single diets commonly used in laboratory studies. More careful consideration of how heterogeneity affects consumer-diet relationships is needed for many field and laboratory system

    Geometric factors influencing the diet of vertebrate predators in marine and terrestrial environments

    Get PDF
    Predator–prey relationships are vital to ecosystem function and there is a need for greater predictive understanding of these interactions. We develop a geometric foraging model predicting minimum prey size scaling in marine and terrestrial vertebrate predators taking into account habitat dimensionality and biological traits. Our model predicts positive predator–prey size relationships on land but negative relationships in the sea. To test the model, we compiled data on diets of 794 predators (mammals, snakes, sharks and rays). Consistent with predictions, both terrestrial endotherm and ectotherm predators have significantly positive predator–prey size relationships. Marine predators, however, exhibit greater variation. Some of the largest predators specialise on small invertebrates while others are large vertebrate specialists. Prey–predator mass ratios were generally higher for ectothermic than endothermic predators, although dietary patterns were similar. Model-based simulations of predator–prey relationships were consistent with observed relationships, suggestin

    Utilization of savanna-based resources by Plio-Pleistocene baboons

    Get PDF
    We have determined the tooth enamel carbonate 13C values of five cercopithecoid taxa from the Plio-Pleistocene deposits of Swartkrans Members 1 and 2 and Sterkfontein Member 4. These data were used to determine the relative proportions of C3 and C4 biomass consumed by extinct baboons and contemporary non-human primates. We compared these results with data on modern Papio hamadryas ursinus from different savanna areas in South Africa, as well as with published isotopic data and dietary interpretations based on molar morphology of these taxa. The data reveal little evidence for use of grasses or grass-based foods by modern South African baboons. The fossil papionins Papio hamadryas robinsoni, Papio (Dinopithecus) ingens, and Parapapio spp., however, utilized more savanna-based C4 resources than previously predicted (particularly in the case of P. (D.) ingens). Theropithecus oswaldi had 13C values depicting, as expected, a largely grass-based diet, and we confirm earlier conclusions that this species incorporated a wider range of food items into its diet than do modern T. gelada, as reported in the literature. The colobine monkey, Cercopithecoides williamsi, made extensive use of savanna-.based C4 foods, confirming some degree of terrestrial foraging by the species

    Within-population isotopic niche variability in savanna mammals: disparity between carnivores and herbivores

    Full text link
    Large mammal ecosystems have relatively simple food webs, usually comprising three — and sometimes only two — trophic links. Since many syntopic species from the same trophic level therefore share resources, dietary niche partitioning features prominently within these systems. In African and other subtropical savannas, stable carbon isotopes readily distinguish between herbivore species for which foliage and other parts of dicot plants (13C-depleted C3 vegetation) are the primary resource (browsers) and those for which grasses (13C-enriched C4 vegetation) are staples (grazers). Similarly, carbon isotopes distinguish between carnivore diets that may be richer in either browser, grazer, or intermediate-feeding prey. Here, we investigate levels of carbon and nitrogen isotopic niche variation and niche partitioning within populations (or species) of carnivores and herbivores from South African savannas. We emphasize predictable differences in within-population trends across trophic levels: we expect that herbivore populations, which require more foraging effort due to higher intake requirements, are far less likely to display within-population resource partitioning than carnivore populations. Our results reveal generally narrower isotopic niche breadths in herbivore than carnivore populations, but more importantly we find lower levels of isotopic differentiation across individuals within herbivore species. While these results offer some support for our general hypothesis, the current paucity of isotopic data for African carnivores limits our ability to test the complete set of predictions arising from our hypothesis. Nevertheless, given the different ecological and ecophysiological constraints to foraging behavior within each trophic level, comparisons across carnivores, and herbivores, which are possible within such simplified food webs, make these systems ideal for developing a process-based understanding of conditions underlying the evolution of intra-specific, individual-level separation of ecological niches

    Reticular contraction frequency and ruminal gas dome development in goats do not differ between grass and browse diets

    Full text link
    In investigations of differences between ruminant species feeding on browse or grass, it is often unclear whether observed differences are animal- or forage-specific. Ruminant species have been classified as ‘moose-type’, with little rumen content stratification, or ‘cattle-type’ with a distinct rumen contents stratification, including a gas layer. To which extent putative differences in forestomach motility are involved in these patterns is unknown. Using sonography, we investigated the frequency of reticular contractions and the stratification of rumen contents in goats fed exclusively on grass hay (n = 6) or dried browse (n = 5) directly after feeding, and after another 6 and 12 h with no access to feed. The frequency of reticular contractions decreased from immediately after feeding (1.8 ± 0.3 min−1) to 6 h afterwards (1.2 ± 0.2 min−1) and then remained constant, with no difference between diets. A gas dome became more visible over time, but neither its incidence nor its extent differed between diets. The results are in accord with classifying goats as ‘cattle-type’ in terms of their digestive physiology, and they add to a growing body of evidence that differences in digestive physiology between ruminant species are more due to species characteristics than different kinds of ingested forages

    ‘Remote’ behavioural ecology: do megaherbivores consume vegetation in proportion to its presence in the landscape?

    Get PDF
    Examination of the feeding habits of mammalian species such as the African elephant (Loxodonta africana) that range over large seasonally dynamic areas is exceptionally challenging using field-based methods alone. Although much is known of their feeding preferences from field studies, conclusions, especially in relation to differing habits in wet and dry seasons, are often contradictory. Here, two remote approaches, stable carbon isotope analysis and remote sensing, were combined to investigate dietary changes in relation to tree and grass abundances to better understand elephant dietary choice in the Kruger National Park, South Africa. A composited pair of Landsat Enhanced Thematic Mapper satellite images characterising flushed and senescent vegetation states, typical of wet and dry seasons respectively, were used to generate land-cover maps focusing on the forest to grassland gradient. Stable carbon isotope analysis of elephant faecal samples identified the proportion of C3 (typically browse)/C4 (typically grass) in elephant diets in the 1–2 days prior to faecal deposition. The proportion of surrounding C4 land-cover was extracted using concentric buffers centred on faecal sample locations, and related to the faecal %C4 content. Results indicate that elephants consume C4 vegetation in proportion to its availability in the surrounding area during the dry season, but during the rainy season there was less of a relationship between C4 intake and availability, as elephants targeted grasses in these periods. This study illustrates the utility of coupling isotope and cost-free remote sensing data to conduct complementary landscape analysis at highly-detailed, biologically meaningful resolutions, offering an improved ability to monitor animal behavioural patterns at broad geographical scales. This is increasingly important due to potential impacts of climate change and woody encroachment on broad-scale landscape habitat composition, allowing the tracking of shifts in species utilisation of these changing landscapes in a way impractical using field based methods alone

    Tracking the fate of digesta 13C and 15N compositions along the ruminant gastrointestinal tract: Does digestion influence the relationship between diet and faeces?

    Get PDF
    Faecal stable isotope compositions reflect wildlife diets, if digestive processes along the gastrointestinal tract (GIT) do not alter diet-faeces isotopic relationships in an unpredictable way. We investigated 13C and 15N compositions of digesta along the ruminant GIT, using Saanen dairy goats kept on pure grass hay or browse for >20days. Isotopic changes occurred in the ventral rumen, and in the small intestine, where digesta had significantly higher δ13C and δ15N (associated with lower C or higher N content, respectively) values relative to other GIT sites. However, effects on isotope fractionation were small (∼1.0‰ for δ13C and ∼ 2.0‰ for δ15N), and were reversed in the hindgut such that faecal isotope compositions did not differ from the foregut. No other substantial isotopic changes occurred across GIT sites, despite the morphophysiological complexity of the ruminant GIT. We found similarly small differences across GIT components of rheem gazelles (Gazella leptoceros) fed a mixture of C3 lucerne and C4 grass, although in this case faeces were 15N-depleted relative to other GIT components. Along with differences in δ15N between goats fed browse or grass, this result implies a systematic difference in diet-faeces δ15N relationships, contingent on the botanical composition of ruminant diets. Thus, while our results support faecal δ13C as a reliable proxy for wildlife diets, further work on factors influencing faecal 15N abundance is needed. Finally, we note high levels of isotopic variability between individuals fed the same diets, even accounting for the relatively short duration of the experiments, suggesting an important influence of stochasticity on isotope fractionatio
    corecore