45 research outputs found

    The Multifaceted Role of Th17 Lymphocytes and Their Associated Cytokines in Cancer

    Get PDF
    While the role of T helper 17 lymphocytes (Th17) in the pathogenesis of autoimmune diseases and in infectious immunity has been relatively well defined, the impact of these cells and their associated cytokines on cancer development is still under debate. Although multiple reports have indicated that Th17 can promote anticancer immunity, others have argued that these cells may exhibit tumor-promoting properties. This dichotomy in the function of Th17 lymphocytes in cancer may be related to the versatile nature of these cells, being capable of differentiating into either proinflammatory Th1 or suppressive FoxP3-expressing Treg cells or hybrid T cell subsets depending on the underlying environmental conditions. In the current review, we examine the role of Th17 lymphocytes and Th17-associated cytokines in cancer and discuss how factors that control their final lineage commitment decision may influence the balance between their tumor-promoting versus tumor-suppressing properties

    Comparing Methods for Creating a National Random Sample of Twitter Users

    Full text link
    Twitter data has been widely used by researchers across various social and computer science disciplines. A common aim when working with Twitter data is the construction of a random sample of users from a given country. However, while several methods have been proposed in the literature, their comparative performance is mostly unexplored. In this paper, we implement four common methods to collect a random sample of Twitter users in the US: 1% Stream, Bounding Box, Location Query, and Language Query. Then, we compare the methods according to their tweet- and user-level metrics as well as their accuracy in estimating US population with and without using inclusion probabilities of various demographics. Our results show that the 1% Stream method performs differently than others in tweet- and user-level metrics, and best for the construction of a population representative sample. We discuss the conditions under which the 1% Stream method may not be suitable and suggest the Bounding Box method as the second-best method to use

    Functionalized iron oxide nanoparticles for controlling the movement of immune cells

    Get PDF
    Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed “cell box” was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain

    Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016

    Editorial: Tumor-promoting immune cells: Cancer immune escape and beyond

    No full text
    International audienceNo abstract availabl

    Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model

    No full text
    Carbon nantotubes (CNTs) are emerging as a new family of nanovectors for drug and gene delivery into biological systems. To evaluate potential application of this technology for brain tumor therapy, we, studied uptake and toxicity of multi-walled CNTs (MWCNTs) in the GL261 murine intracranial glioma model. Within 24 h of a single intratumoral injection of labeled MWCNTs (5 µg), nearly 10-20% of total cells demonstrated CNT internalization. Most CNT uptake, however, occurred by tumor-associated macrophages (MP), which accounted for most (75%) MWCNT-positive cells. Within 24 h of injection, nearly 30% of tumor MP became MWCNT-positive. Despite a transient increase in inflammatory cell infiltration into both normal and tumor-bearing brains following MWCNT injection, no significant toxicity was noted in mice, and minor changes in tumor cytokine expression were observed. This study suggests that MWCNTs could potentially be used as a novel and non-toxic vehicle for targeting MP in brain tumors
    corecore