28 research outputs found

    Prohibitin Links Cell Cycle, Motility and Invasion in Prostate Cancer Cells

    Get PDF
    Prohibitin (PHB) is a tumour suppressor gene with several different molecular activities. PHB overexpression leads to G1/S-phase cell cycle arrest, and PHB represses the androgen receptor (AR) in prostate cancer cells. PHB interacts with and represses members of the E2F family in a manner that may also be AR-linked, therefore making the AR:PHB:E2F interaction axis highly complex. PHB siRNA increased the growth and metastatic potential of LNCaP mouse xenografts in vivo. Conversely, PHB ectopic cDNA overexpression affected several hundred genes in LNCaP cells. Furthermore, gene ontology analysis showed that in addition to cell cycle regulation, several members of the WNT family were significantly downregulated (WNT7B, WNT9A and WNT10B), as well as pathways for cell adhesion. Online GEO data studies showed PHB expression to be decreased in clinical cases of metastatic prostate cancer, and to be correlated with higher WNT expression in metastasis. PHB overexpression reduced prostate cancer cell migration and motility in wound-healing assays, reduced cell invasion through a Matrigel layer and reduced cellular attachment. In LNCaP cells, WNT7B, WNT9A and WNT10B expression were also upregulated by androgen treatment and downregulated by androgen antagonism, indicating a role for AR in the control of these WNT genes. However, these WNTs were strongly cell cycle regulated. E2F1 cDNA ectopic expression and PHB siRNA (both cell cycle promoting effects) increased WNT7B, WNT9A and WNT10B expression, and these genes were also upregulated as cells were released from G1 to S phase synchronisation, indicating further cell cycle regulation. Therefore, the repressive effects of PHB may inhibit AR, E2F and WNT expression and its loss may increase metastatic potential in human prostate cancer

    Wnt-11 expression promotes invasiveness and correlates with survival in human pancreatic ductal adeno carcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer, proving difficult to manage clinically. Wnt-11, a developmentally regulated gene producing a secreted protein, has been associated with various carcinomas but has not previously been studied in PDAC. The present study aimed to elucidate these aspects first in vitro and then in a clinical setting in vivo. Molecular analyses of Wnt-11 expression as well as other biomarkers involved qRT-PCR, RNA-seq and siRNA. Proliferation was measured by MTT; invasiveness was quantified by Boyden chamber (Matrigel) assay. Wnt-11 mRNA was present in three different human PDAC cell lines. Wnt-11 loss affected epithelial-mesenchymal transition and expression of neuronal and stemness biomarkers associated with metastasis. Indeed, silencing Wnt-11 in Panc-1 cells significantly inhibited their Matrigel invasiveness without affecting their proliferative activity. Consistently with the in vitro data, human biopsies of PDAC showed significantly higher Wnt-11 mRNA levels compared with matched adjacent tissues. Expression was significantly upregulated during PDAC progression (TNM stage I to II) and maintained (TNM stages III and IV). Wnt-11 is expressed in PDAC in vitro and in vivo and plays a significant role in the pathophysiology of the disease; this evidence leads to the conclusion that Wnt-11 could serve as a novel, functional biomarker PDA
    corecore