42 research outputs found

    Wheat variety guide 2010 Western Australia

    Get PDF
    This guide summarises performance characteristics of commercially available wheats which have undergone testing in the National Variety Testing Project (NVT), breeding organisations crop variety testing and Department of Agriculture and Food (DAFWA) variety specific agronomy projects. This information includes variety summaries, agronomic, disease and herbicide tolerance characteristics and medium to long-term yield performance. A review of regional performance in 2009 is followed by a comprehensive summary of 2009 variety time of sowing experiments and observed flowering dates. By combining agronomy research outcomes with other related wheat research this document provides current information to assist with variety choice and management for 2010.https://researchlibrary.agric.wa.gov.au/bulletins/1171/thumbnail.jp

    Crop Updates 2009 - Cereals

    Get PDF
    This session covers twenty seven papers from different authors: PLENARY 1. Building soil carbon for productivity and implications for carbon accounting, Jeff Baldock, CSIRO Land and Water, Adelaide, SA 2. Fact or Fiction: Who is telling the truth and how to tell the difference, Doug Edmeades, agKnowledge Ltd, Hamilton 3. Four decades of crop sequence trials in Western Australia, Mark Seymour,Department of Agriculture and Food BREAK CROPS 4. 2008 Break Crops survey Report, Paul Carmody,Development Officer, Department of Agriculture and Food 5. Attitudes of Western Australian wheatbelt growers to ‘Break Crops’, Paul Carmody and Ian Pritchard, Development Officers, Department of Agriculture and Food 6. The value of organic nitrogen from lupins, Alan Meldrum, Pulse Australia 7.The area of break crops on farm: What farmers are doing compared to estimates based on maximising profit, Michael Robertson and Roger Lawes,CSIRO Floreat, Rob Sands,FARMANCO Farm Consultants, Peter White,Department of Agriculture and Food, Western Australia, Felicity Byrne and Andrew Bathgate,Farming Systems Analysis CROP SPECIFIC Breeding 8. Identification of WALAB2014 as a potential albus lupin variety for northern agricultural region of Western Australia, Kedar Adhikari, Department of Agriculture and Food 9. Enhancement of black spot resistance in field pea, Kedar Adhikari, Tanveer Khan, Stuart Morgan and Alan Harris, Department of Agriculture and Food 10. Desi chickpea breeding: Evaluation of advanced line, Khan, TN1, Harris, A1, Gaur, P2, Siddique, KHM3, Clarke, H4, Turner, NC4, MacLeod, W1, Morgan, S1 1Department of Agriculture and Food, Western Australia, 2International Crop Research Institute for the Semi Arid Tropics (ICRISAT), 3The University of Western Australia, 4Centre for Legumes in Mediterranean Agriculture 11. Pulse Breeding Australia-Australian Field Pea Improvement Program (AFPIP), Ian Pritchard1, Chris Veitch1, Stuart Morgan1, Alan Harris1 and Tony Leonforte 2 1 Department of Agriculture and Food, Western Australia, 2 Department off Primary Industries, Victoria Disease 12. Interaction between wheat varieties and fungicides to control stripe rust for grain and quality, Kith Jayasena, Geoff Thomas, Rob Loughman, Kazue Tanaka and Bill MacLeod, Department of Agriculture and Food 13. Findings of canola disease survey 2008 and its implications for better disease management in 2009, Ravjit Khangura, WJ MacLeod, P White, P Carmody and M Amjad, Department of Agriculture and Food 14. Combating wheat leaf diseases using genome sequencing and functional genomics, Richard Oliver, Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University 15. Distribution and survival of wheat curl mite (Aceria tosichella), vector of Wheat Streak Mosaic Virus, in the WA grainbelt during 2008, Dusty Severtson, Peter Mangano, John Botha and Brenda Coutts, Department of Agriculture and Food 16. Partial resistance to Stagonspora (Septoria) Partial resistance to Stagonospora (Septoria) nodorum blotch and response to fungicide in a severe epidemic scenario, Manisha Shankar1, Richard Oliver2, Kasia Rybak2and Rob Loughman1 1Department of Agriculture and Food, Western Australia, 2Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University, Western Australia 17. Black pod syndrome in lupins can be reduced by regular insecticide sprays, Peter White and Michael Baker,Department of Agriculture and Food Variety performance 18. Incorporating new herbicide tolerant juncea canola into low rainfall cropping systems in Western Australia, Mohammad Amjad, Department of Agriculture and Food 19. Varietal differences in germ end staining of barley, Andrea Hills,Department of Agriculture and Food 20. Wheat variety performance in the Central Agricultural Region in 2008, Shahajahan Miyan, Department of Agriculture and Food 21. Barley variety identification using DNA fingerprinting, Peter Portmann, Agriconnect, Perth WA Dr Nicole Rice, Southern Cross University, Lismore NSW Prof Robert Henry, Southern Cross University, Lismore NSW 22. Forecast disease resistance profile for the Western Australian barley crop over the next three years, Jeff J. Russell, Department of Agriculture and Food 23. Malting barley varieties differ in their flowering date and their response to changes in sowing date, BH Paynter and Jeff J. Russell,Department of Agriculture and Food 24. Market development for new barley varieties, Linda Price,Barley Australia 25. Response of wheat varieties to sowing time at Mt Barker, Katanning and Newdegate in 2008, Brenda Shackley and Vicki Scanlan,Department of Agriculture and Food 26. Flowering dates of wheat varieties in 2008 at three locations in Western Australia, Darshan Sharma, Brenda Shackley and Christine Zaicou-Kunesch, Department of Agriculture and Food 27. Agronomic responses of new wheat varieties in the norther agricultural region in 2008, Christine Zaicou-Kunesch, Department of Agriculture and Foo

    Crop Updates 2006 - Cereals

    Get PDF
    This session covers twenty nine papers from different authors: PLENARY 1. The 2005 wheat streak mosaic virus epidemic in New South Wales and the threat posed to the Western Australian wheat industry, Roger Jones and Nichole Burges, Department of Agriculture SOUTH COAST AGRONOMY 2. South coast wheat variety trial results and best options for 2006, Mohammad Amjad, Ben Curtis and Wal Anderson, Department of Agriculture 3. Dual purpose winter wheats to improve productivity, Mohammad Amjad and Ben Curtis, Department of Agriculture 4. South coast large-scale premium wheat variety trials, Mohammad Amjad and Ben Curtis, Department of Agriculture 5. Optimal input packages for noodle wheat in Dalwallinu – Liebe practice for profit trial, Darren Chitty, Agritech Crop Research and Brianna Peake, Liebe Group 6. In-crop risk management using yield prophet®, Harm van Rees1, Cherie Reilly1, James Hunt1, Dean Holzworth2, Zvi Hochman2; 1Birchip Cropping Group, Victoria; 2CSIRO, Toowoomba, Qld 7. Yield Prophet® 2005 – On-line yield forecasting, James Hunt1, Harm van Rees1, Zvi Hochman2,Allan Peake2, Neal Dalgliesh2, Dean Holzworth2, Stephen van Rees1, Trudy McCann1 and Peter Carberry2; 1Birchip Cropping Group, Victoria; 2CSIRO, Toowoomba, Qld 8. Performance of oaten hay varieties in Western Australian environments, Raj Malik and Kellie Winfield, Department of Agriculture 9. Performance of dwarf potential milling varieties in Western Australian environments, Kellie Winfield and Raj Malik, Department of Agriculture 10. Agronomic responses of new wheat varieties in the Southern agricultural region of WA, Brenda Shackley and Judith Devenish, Department of Agriculture 11. Responses of new wheat varieties to management factors in the central agricultural region of Western Australia, Darshan Sharma, Steve Penny and Wal Anderson,Department of Agriculture 12. Sowing time on wheat yield, quality and $ - Northern agricultural region, Christine Zaicou-Kunesch, Department of Agriculture NUTRITION 13.The most effective method of applying phosphorus, copper and zinc to no-till crops, Mike Bolland and Ross Brennan, Department of Agriculture 14. Uptake of K from the soil profile by wheat, Paul Damon and Zed Rengel, Faculty of Natural and Agricultural Sciences, University of Western Australia 15. Reducing nitrogen fertiliser risks, Jeremy Lemon, Department of Agriculture 16. Yield Prophet® and canopy management, Harm van Rees1, Zvi Hochman2, Perry Poulton2, Nick Poole3, Brooke Thompson4, James Hunt1; 1Birchip Cropping Group, Victoria; 2CSIRO, Toowoomba, Qld; 3Foundation for Arable Research, New Zealand; 4Cropfacts, Victoria 17. Producing profits with phosphorus, Stephen Loss, CSBP Ltd, WA 18. Potassium response in cereal cropping within the medium rainfall central wheatbelt, Jeff Russell1, Angie Roe2 and James Eyres2, Department of Agriculture1, Farm Focus Consultants, Northam2 19. Matching nitrogen supply to wheat demand in the high rainfall cropping zone, Narelle Simpson, Ron McTaggart, Wal Anderson, Lionel Martin and Dave Allen, Department of Agriculture DISEASES 20. Comparative study of commercial wheat cultivars and differential lines (with known Pm resistance genes) to powdery mildew response, Hossein Golzar, Manisha Shankar and Robert Loughman, Department of Agriculture 21. On farm research to investigate fungicide applications to minimise leaf disease impacts in wheat – part II, Jeff Russell1, Angie Roe2and James Eyres2, Department of Agriculture1, and Farm Focus Consultants, Northam2 22. Disease resistance update for wheat varieties in WA, Manisha Shankar, John Majewski, Donna Foster, Hossein Golzar, Jamie Piotrowski, Nicole Harry and Rob Loughman, Department of Agriculture 23. Effect of time of stripe rust inoculum arrival on variety response in wheat, Manisha Shankar, John Majewski and Rob Loughman, Department of Agriculture 24. Fungicide seed dressing management of loose smut in Baudin barley, Geoff Thomas and Kith Jayasena, Department of Agriculture PESTS 25. How to avoid insect contamination in cereal grain at harvest, Svetlana Micic, Paul Matson and Tony Dore, Department of Agriculture ABIOTIC 26. Environment – is it as important as variety in sprouting tolerance? Thomas (Ben) Biddulph1, Dr Daryl Mares1, Dr Julie Plummer1 and Dr Tim Setter2, School of Plant Biology, University of Western Australia1 and Department of Agriculture2 27. Frost or fiction, Garren Knell, Steve Curtin and Wade Longmuir, ConsultAg Pty Ltd, WA 28. High moisture wheat harvesting in Esperance 2005, Nigel Metz, South East Premium Wheat Growers Association (SEPWA) Projects Coordinator, Esperance, WA SOILS 28. Hardpan penetration ability of wheat roots, Tina Botwright Acuña and Len Wade, School of Plant Biology, University of Western Australia MARKETS 29. Crop shaping to meet predicted market demands for wheat in the 21st Century, Cindy Mills and Peter Stone,Australian Wheat Board, Melbourn

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    © 2020 Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Background: Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods: Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings: Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation: The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC. Funding: Bill & Melinda Gates Foundation

    Interpreting the Image of the Human Body in Premodern India

    Get PDF
    This paper sets out two main arguments. In part one, a description of the adherents of the various intellectual disciplines and religious faiths in premodern India is given, each having developed distinct and different imagined bodies; for example, the body described in Tantric circles had little or nothing in common with the body described in medical circles. In part two, an account is given of the encounter between Ayurvedic anatomy and early colonial European anatomy which led initially to attempts at synthesis; these gave way to an abandonment of the syncretist vision of the body and the acceptance of an epistemological suspension of judgment, in which radically different body conceptualizations are simultaneously held in unacknowledged cognitive dissonance
    corecore