12 research outputs found

    DMESH: FAST DEPTH-IMAGE MESHING AND WARPING

    No full text

    Interactive Distributed Ray Tracing of Highly Complex Models

    No full text

    Interactive Global Illumination in Dynamic Scenes

    No full text
    In this paper, we present a system for interactive computation of global illumination in dynamic scenes. Our system uses a novel scheme for caching the results of a high quality pixel-based renderer such as a bidirectional path tracer. The Shading Cache is an objectspace hierarchical subdivision mesh with lazily computed shading values at its vertices. A high frame rate display is generated from the Shading Cache using hardware-based interpolation and texture mapping. An image space sampling scheme refines the Shading Cache in regions that have the most interpolation error or those that are most likely to be affected by object or camera motion. Our system handles dynamic scenes and moving light sources efficiently, providing useful feedback within a few seconds and high quality images within a few tens of seconds, without the need for any pre-computation. Our approach allows us to significantly outperform other interactive systems based on caching ray-tracing samples, especially in dynamic scenes. Based on our results, we believe that the Shading Cache will be an invaluable tool in lighting design and modelling while rendering

    Billboard clouds for extreme model simplification

    Get PDF
    We introduce billboard clouds - a new approach for extreme simplification in the context of real-time rendering. 3D models are simplified onto a set of planes with texture and transparency maps. We present an optimization approach to build a billboard cloud given a geometric error threshold. After computing an appropriate density function in plane space, a greedy approach is used to select suitable representative planes. A good surface approximation is ensured by favoring planes that are "nearly tangent" to the model. This method does not require connectivity information, but instead avoids cracks by projecting primitives onto multiple planes when needed. For extreme simplification, our approach combines the strengths of mesh decimation and image-based impostors. We demonstrate our technique on a large class of models, including smooth manifolds and composite objects
    corecore