22 research outputs found

    Highly Selective PTK2 Proteolysis Targeting Chimeras to Probe Focal Adhesion Kinase Scaffolding Functions

    Get PDF
    Focal adhesion tyrosine kinase (PTK2) is often overexpressed in human hepatocellular carcinoma (HCC), and several reports have linked PTK2 depletion and/or pharmacological inhibition to reduced tumorigenicity. However, the clinical relevance of targeting PTK2 still remains to be proven. Here, we present two highly selective and functional PTK2 proteolysis-targeting chimeras utilizing von Hippel–Lindau and cereblon ligands to hijack E3 ligases for PTK2 degradation. BI-3663 (cereblon-based) degrades PTK2 with a median DC<sub>50</sub> of 30 nM to >80% across a panel of 11 HCC cell lines. Despite effective PTK2 degradation, these compounds did not phenocopy the reported antiproliferative effects of PTK2 depletion in any of the cell lines tested. By disclosing these compounds, we hope to provide valuable tools for the study of PTK2 degradation across different biological systems

    Direct NMR Probing of Hydration Shells of Protein Ligand Interfaces and Its Application to Drug Design

    No full text
    Fragment-based drug design exploits initial screening of low molecular weight compounds and their concomitant affinity improvement. The multitude of possible chemical modifications highlights the necessity to obtain structural information about the binding mode of a fragment. Herein we describe a novel NMR methodology (LOGSY titration) that allows the determination of binding modes of low affinity binders in the protein–ligand interface and reveals suitable ligand positions for the addition of functional groups that either address or substitute protein-bound water, information of utmost importance for drug design. The particular benefit of the methodology and in contrast to conventional ligand-based methods is the independence of the molecular weight of the protein under study. The validity of the novel approach is demonstrated on two ligands interacting with bromodomain 1 of bromodomain containing protein 4, a prominent cancer target in pharmaceutical industry

    An Orally Available 3-Ethoxybenzisoxazole Capsid Binder with Clinical Activity against Human Rhinovirus

    No full text
    Respiratory infections caused by human rhinovirus are responsible for severe exacerbations of underlying clinical conditions such as asthma in addition to their economic cost in terms of lost working days due to illness. While several antiviral compounds for treating rhinoviral infections have been discovered, none have succeeded, to date, in reaching approval for clinical use. We have developed a potent, orally available rhinovirus inhibitor <b>6</b> that has progressed through early clinical trials. The compound shows favorable pharmacokinetic and activity profiles and has a confirmed mechanism of action through crystallographic studies of a rhinovirus−compound complex. The compound has now progressed to phase IIb clinical studies of its effect on natural rhinovirus infection in humans

    An Orally Available 3-Ethoxybenzisoxazole Capsid Binder with Clinical Activity against Human Rhinovirus

    No full text
    Respiratory infections caused by human rhinovirus are responsible for severe exacerbations of underlying clinical conditions such as asthma in addition to their economic cost in terms of lost working days due to illness. While several antiviral compounds for treating rhinoviral infections have been discovered, none have succeeded, to date, in reaching approval for clinical use. We have developed a potent, orally available rhinovirus inhibitor <b>6</b> that has progressed through early clinical trials. The compound shows favorable pharmacokinetic and activity profiles and has a confirmed mechanism of action through crystallographic studies of a rhinovirus−compound complex. The compound has now progressed to phase IIb clinical studies of its effect on natural rhinovirus infection in humans

    Drugit: Crowd-sourcing molecular design of non-peptidic VHL binders

    No full text
    Given the role of human intuition in current drug design efforts, crowd-sourced \u27citizen scientist\u27 games have the potential to greatly expand the pool of potential drug designers. Here, we introduce ‘Drugit\u27, the small molecule design mode of the online ‘citizen science’ game Foldit. We demonstrate its utility for design with a use case to identify novel binders to the von Hippel Lindau E3 ligase. Several thousand molecule suggestions were obtained from players in a series of 10 puzzle rounds. The proposed molecules were then evaluated by in silico methods and by an expert panel and selected candidates were synthesized and tested. One of these molecules, designed by a player, showed dose-dependent shift perturbations in protein-observed NMR experiments. The co-crystal structure in complex with the E3 ligase revealed that the observed binding mode matched in major parts the player’s original idea. The completion of one full design cycle is a proof of concept for the Drugit approach and highlights the potential of involving citizen scientists in early drug discovery
    corecore