706 research outputs found

    An updated protocol for high throughput plant tissue sectioning

    Get PDF
    Quantification of the tissue and cellular structure of plant material is essential for the study of a variety of plant sciences applications. Currently, many methods for sectioning plant material are either low throughput or involve free-hand sectioning which requires a significant amount of practice. Here, we present an updated method to provide rapid and high-quality cross sections, primarily of root tissue but which can also be readily applied to other tissues such as leaves or stems. To increase the throughput of traditional agarose embedding and sectioning, custom designed 3D printed molds were utilized to embed 5–15 roots in a block for sectioning in a single cut. A single fluorescent stain in combination with laser scanning confocal microscopy was used to obtain high quality images of thick sections. The provided CAD files allow production of the embedding molds described here from a number of online 3D printing services. Although originally developed for roots, this method provides rapid, high quality cross sections of many plant tissue types, making it suitable for use in forward genetic screens for differences in specific cell structures or developmental changes. To demonstrate the utility of the technique, the two parent lines of the wheat (Triticum aestivum) Chinese Spring × Paragon doubled haploid mapping population were phenotyped for root anatomical differences. Significant differences in adventitious cross section area, stele area, xylem, phloem, metaxylem, and cortical cell file count were found

    On the evaluation of methods for the recovery of plant root systems from X-ray computed tomography images

    Get PDF
    X-ray micro computed tomography (µCT) allows non-destructive visualisation of plant root systems within their soil environment and thus offers an alternative to commonly used destructive methodologies for the examination of plant roots and their interaction with the surrounding soil. Various methods for the recovery of root system information from X-ray CT image data have been presented in the literature. Detailed, ideally quantitative, evaluation is essential, in order to determine the accuracy and limitations of the proposed methods, and to allow potential users to make informed choices between them. This, however, is a complicated task. Three-dimensional ground truth data is expensive to produce, and the complexity of X-ray CT data means that manually generated ground truth may not be definitive. Similarly, artificially generated data is not entirely representative of real samples. The aims of this work are to raise awareness of the evaluation problem and to propose experimental approaches that allow the performance of root extraction methods to be assessed, ultimately improving the techniques available. To illustrate the issues, tests are conducted using both artificially generated images and real data samples

    Auxin fluxes through plasmodesmata modify root-tip auxin distribution

    Get PDF
    © 2020. Published by The Company of Biologists Ltd. Auxin is a key signal regulating plant growth and development. It is well established that auxin dynamics depend on the spatial distribution of efflux and influx carriers on the cell membranes. In this study, we employ a systems approach to characterise an alternative symplastic pathway for auxin mobilisation via plasmodesmata, which function as intercellular pores linking the cytoplasm of adjacent cells. To investigate the role of plasmodesmata in auxin patterning, we developed a multicellular model of the Arabidopsis root tip. We tested the model predictions using the DII-VENUS auxin response reporter, comparing the predicted and observed DII-VENUS distributions using genetic and chemical perturbations designed to affect both carrier-mediated and plasmodesmatal auxin fluxes. The model revealed that carrier-mediated transport alone cannot explain the experimentally determined auxin distribution in the root tip. In contrast, a composite model that incorporates both carrier-mediated and plasmodesmatal auxin fluxes re-capitulates the root-tip auxin distribution. We found that auxin fluxes through plasmodesmata enable auxin reflux and increase total root-tip auxin. We conclude that auxin fluxes through plasmodesmata modify the auxin distribution created by efflux and influx carriers

    An Updated Protocol for High Throughput Plant Tissue Sectioning

    Get PDF
    Quantification of the tissue and cellular structure of plant material is essential for the study of a variety of plant sciences applications. Currently, many methods for sectioning plant material are either low throughput or involve free-hand sectioning which requires a significant amount of practice. Here, we present an updated method to provide rapid and high-quality cross sections, primarily of root tissue but which can also be readily applied to other tissues such as leaves or stems. To increase the throughput of traditional agarose embedding and sectioning, custom designed 3D printed molds were utilized to embed 5–15 roots in a block for sectioning in a single cut. A single fluorescent stain in combination with laser scanning confocal microscopy was used to obtain high quality images of thick sections. The provided CAD files allow production of the embedding molds described here from a number of online 3D printing services. Although originally developed for roots, this method provides rapid, high quality cross sections of many plant tissue types, making it suitable for use in forward genetic screens for differences in specific cell structures or developmental changes. To demonstrate the utility of the technique, the two parent lines of the wheat (Triticum aestivum) Chinese Spring × Paragon doubled haploid mapping population were phenotyped for root anatomical differences. Significant differences in adventitious cross section area, stele area, xylem, phloem, metaxylem, and cortical cell file count were found

    Adding a piece to the leaf epidermal cell shape puzzle

    Get PDF
    The jigsaw puzzle-shaped pavement cells in the leaf epidermis collectively function as a load-bearing tissue that controls organ growth. In this issue of Developmental Cell, Majda et al. (2017) shed light on how the jigsaw shape can arise from localized variations in wall stiffness between adjacent epidermal cells

    Approaches to three-dimensional reconstruction of plant shoot topology and geometry

    Get PDF
    There are currently 805 million people classified as chronically undernourished, and yet the World’s population is still increasing. At the same time, global warming is causing more frequent and severe flooding and drought, thus destroying crops and reducing the amount of land available for agriculture. Recent studies show that without crop climate adaption, crop productivity will deteriorate. With access to 3D models of real plants it is possible to acquire detailed morphological and gross developmental data that can be used to study their ecophysiology, leading to an increase in crop yield and stability across hostile and changing environments. Here we review approaches to the reconstruction of 3D models of plant shoots from image data, consider current applications in plant and crop science, and identify remaining challenges. We conclude that although phenotyping is receiving an increasing amount of attention – particularly from computer vision researchers – and numerous vision approaches have been proposed, it still remains a highly interactive process. An automated system capable of producing 3D models of plants would significantly aid phenotyping practice, increasing accuracy and repeatability of measurements

    RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures

    Get PDF
    © The Author(s) 2019. Published by Oxford University Press. BACKGROUND: In recent years quantitative analysis of root growth has become increasingly important as a way to explore the influence of abiotic stress such as high temperature and drought on a plant's ability to take up water and nutrients. Segmentation and feature extraction of plant roots from images presents a significant computer vision challenge. Root images contain complicated structures, variations in size, background, occlusion, clutter and variation in lighting conditions. We present a new image analysis approach that provides fully automatic extraction of complex root system architectures from a range of plant species in varied imaging set-ups. Driven by modern deep-learning approaches, RootNav 2.0 replaces previously manual and semi-automatic feature extraction with an extremely deep multi-task convolutional neural network architecture. The network also locates seeds, first order and second order root tips to drive a search algorithm seeking optimal paths throughout the image, extracting accurate architectures without user interaction. RESULTS: We develop and train a novel deep network architecture to explicitly combine local pixel information with global scene information in order to accurately segment small root features across high-resolution images. The proposed method was evaluated on images of wheat (Triticum aestivum L.) from a seedling assay. Compared with semi-automatic analysis via the original RootNav tool, the proposed method demonstrated comparable accuracy, with a 10-fold increase in speed. The network was able to adapt to different plant species via transfer learning, offering similar accuracy when transferred to an Arabidopsis thaliana plate assay. A final instance of transfer learning, to images of Brassica napus from a hydroponic assay, still demonstrated good accuracy despite many fewer training images. CONCLUSIONS: We present RootNav 2.0, a new approach to root image analysis driven by a deep neural network. The tool can be adapted to new image domains with a reduced number of images, and offers substantial speed improvements over semi-automatic and manual approaches. The tool outputs root architectures in the widely accepted RSML standard, for which numerous analysis packages exist (http://rootsystemml.github.io/), as well as segmentation masks compatible with other automated measurement tools. The tool will provide researchers with the ability to analyse root systems at larget scales than ever before, at a time when large scale genomic studies have made this more important than ever

    Low-cost automated vectors and modular environmental sensors for plant phenotyping

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. High-throughput plant phenotyping in controlled environments (growth chambers and glasshouses) is often delivered via large, expensive installations, leading to limited access and the increased relevance of “affordable phenotyping” solutions. We present two robot vectors for automated plant phenotyping under controlled conditions. Using 3D-printed components and readily-available hardware and electronic components, these designs are inexpensive, flexible and easily modified to multiple tasks. We present a design for a thermal imaging robot for high-precision time-lapse imaging of canopies and a Plate Imager for high-throughput phenotyping of roots and shoots of plants grown on media plates. Phenotyping in controlled conditions requires multi-position spatial and temporal monitoring of environmental conditions. We also present a low-cost sensor platform for environmental monitoring based on inexpensive sensors, microcontrollers and internet-of-things (IoT) protocols

    Three-dimensional reconstruction of plant shoots from multiple images using an active vision system

    Get PDF
    The reconstruction of 3D models of plant shoots is a challenging problem central to the emerging discipline of plant phenomics – the quantitative measurement of plant structure and function. Current approaches are, however, often limited by the use of static cameras. We propose an automated active phenotyping cell to reconstruct plant shoots from multiple images using a turntable capable of rotating 360 degrees and camera mounted robot arm. To overcome the problem of static camera positions we develop an algorithm capable of analysing the environment and determining viewpoints from which to capture initial images suitable for use by a structure from motion technique

    Positioning the Root Elongation Zone Is Saltatory and Receives Input from the Shoot

    Get PDF
    In the root, meristem and elongation zone lengths remain stable, despite growth and division of cells. To gain insight into zone stability, we imaged individual Arabidopsis thaliana roots through a horizontal microscope, and used image analysis to obtain velocity profiles. For a root, velocity profiles obtained every 5 min over 3 h coincided closely, implying that zonation is regulated tightly. However, the position of the elongation zone saltated, by on average 17 ÎĽm every 5 min. Saltation was apparently driven by material elements growing faster and then slower, while moving through the growth zone. When the shoot was excised, after about 90 minutes, growth zone dynamics resembled those of intact roots, except that the position of the elongation zone moved, on average, rootward, by several hundred microns in 24 h. We hypothesize that mechanisms determining elongation zone position receive input from the shoot
    • …
    corecore