49 research outputs found

    Going your own way: Self-guidance mechanisms in cell migration

    Full text link
    How cells and tissues migrate from one location to another is a question of significant biological and medical relevance. Migration is generally thought to be controlled by external hardwired guidance cues, which cells follow by polarizing their internal locomotory machinery in the imposed direction. However, a number of recently discovered ‘self-guidance’ mechanisms have revealed that migrating cells have more control over the path they follow than previously thought. Here, directional information is generated by the migrating cells themselves via a dynamic interplay of cell-intrinsic and -extrinsic regulators. In this review, we discuss how self-guidance can emerge from mechanisms acting at different levels of scale and how these enable cells to rapidly adapt to environmental challenges

    An image-based data-driven analysis of cellular architecture in a developing tissue

    Full text link
    Quantitative microscopy is becoming increasingly crucial in efforts to disentangle the complexity of organogenesis, yet adoption of the potent new toolbox provided by modern data science has been slow, primarily because it is often not directly applicable to developmental imaging data. We tackle this issue with a newly developed algorithm that uses point cloud-based morphometry to unpack the rich information encoded in 3D image data into a straightforward numerical representation. This enabled us to employ data science tools, including machine learning, to analyze and integrate cell morphology, intracellular organization, gene expression and annotated contextual knowledge. We apply these techniques to construct and explore a quantitative atlas of cellular architecture for the zebrafish posterior lateral line primordium, an experimentally tractable model of complex self-organized organogenesis. In doing so, we are able to retrieve both previously established and novel biologically relevant patterns, demonstrating the potential of our data-driven approach

    A role for the centrosome in regulating the rate of neuronal efferocytosis by microglia in vivo

    Full text link
    During brain development, many newborn neurons undergo apoptosis and are engulfed by microglia, the tissue-resident phagocytes of the brain, in a process known as efferocytosis. A hallmark of microglia is their highly branched morphology characterized by the presence of numerous dynamic extensions that these cells use for scanning the brain parenchyma and engulfing unwanted material. The mechanisms driving branch formation and apoptotic cell engulfment in microglia are unclear. By taking a live-imaging approach in zebrafish, we show that while microglia generate multiple microtubule-based branches, they only successfully engulf one apoptotic neuron at a time. Further investigation into the mechanism underlying this sequential engulfment revealed that targeted migration of the centrosome into one branch is predictive of phagosome formation and polarized vesicular trafficking. Moreover, experimentally doubling centrosomal numbers in microglia increases the rate of engulfment and even allows microglia to remove two neurons simultaneously, providing direct supporting evidence for a model where centrosomal migration is a rate-limiting step in branch-mediated efferocytosis. Conversely, light-mediated depolymerization of microtubules causes microglia to lose their typical branched morphology and switch to an alternative mode of engulfment, characterized by directed migration towards target neurons, revealing unexpected plasticity in their phagocytic ability. Finally, building on work focusing on the establishment of the immunological synapse, we identified a conserved signalling pathway underlying centrosomal movement in engulfing microglia

    Smoothelin-like 2 Inhibits Coronin-1B to Stabilize the Apical Actin Cortex during Epithelial Morphogenesis

    Get PDF
    The actin cortex is involved in many biological processes and needs to be significantly remodeled during cell differentiation. Developing epithelial cells construct a dense apical actin cortex to carry out their barrier and exchange functions. The apical cortex assembles in response to three-dimensional (3D) extracellular cues, but the regulation of this process during epithelial morphogenesis remains unknown. Here, we describe Smoothelin-like 2 (SMTNL2) function, a member of the smooth-muscle related Smoothelin protein family, in apical cortex maturation. SMTNL2 is induced during the development of multiple epithelial tissues and localizes to the apical and junctional actin cortex in intestinal and kidney epithelial cells. SMTNL2 deficiency leads to membrane herniations in the apical domain of epithelial cells, indicative of cortex abnormalities. We find that SMTNL2 binds to actin filaments and is required to slow down the turnover of apical actin. We also characterize the SMTNL2 proximal interactome and find that SMTNL2 executes its functions partly through inhibition of Coronin-1B. While Coronin-1B-mediated actin dynamics are required for early morphogenesis, its sustained activity is detrimental for the mature apical shape. SMTNL2 binds to Coronin-1B through its N-terminal coiled-coil region and negates its function to stabilize the apical cortex. In sum, our results unveil a mechanism for regulating actin dynamics during epithelial morphogenesis, providing critical insights on the developmental control of the cellular corte

    Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Get PDF
    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Epithelial morphogenesis: stage diving with purpose

    Get PDF
    In a new paper in the October 8(th) issue of Cell, Kuo and Krasnow (2015) report a previously undescribed mechanism for cell sorting and reveal a dynamic, daredevil behavior of epithelial cells

    Organizing moving groups during morphogenesis

    Full text link
    The directed migration of cells drives the formation of many complex organ systems. Although in this morphogenetic context cells display a strong preference for migrating in organized, cohesive groups, little is known about the mechanisms that coordinate their movements. Recent studies on several model systems have begun to dissect the organization of these migrating tissues in vivo and have shown that cell guidance is mediated by a combination of chemical and mechanical cues

    Getting back on track: exploiting canalization to uncover the mechanisms of developmental robustness

    Full text link
    Developing embryos can adapt dynamically to noise and variation to generate organs of incredible precision, a process termed ‘canalization’; however, the underlying robustness mechanisms are poorly understood. Technological developments, both in quantitative imaging and high precision perturbation, are now enabling targeted investigation into developmental robustness in vivo. Here, we will first distil the common design features of studies that have exploited the canalization behaviour of specific systems to interrogate developmental adaptation, to provide a general experimental framework for future investigations in other contexts. We will then highlight, using a selection of recent case studies, how this approach is revealing that tissues and embryos can fix themselves in unexpected ways

    Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line

    Get PDF
    The shape of most complex organ systems arises from the directed migration of cohesive groups of cells. Here, we dissect the role of the chemokine guidance receptor Cxcr4b in regulating the collective migration of one such cohesive tissue, the zebrafish lateral line primordium. Using in vivo imaging, we show that the shape and organization of the primordium is surprisingly labile, and that internal cell movements are uncoordinated in embryos with reduced Cxcr4b signaling. Genetic mosaic experiments reveal that single cxcr4b mutant cells can migrate in a directional manner when placed in wild-type primordia, but that they are specifically excluded from the leading edge. Moreover, a remarkably small number of SDF1a-responsive cells are able to organize an entire cxcr4b mutant primordium to restore migration and organogenesis in the lateral line. These results reveal a role for chemokine signaling in mediating the self-organizing migration of tissues during morphogenesis
    corecore