118 research outputs found

    Male sexually coercive behaviour drives increased swimming efficiency in female guppies

    Get PDF
    Sexual coercion of females by males is widespread across sexually reproducing species. It stems from a conflict of interest over reproduction and exerts selective pressure on both sexes. For females, there is often a significant energetic cost of exposure to male sexually coercive behaviours. Our understanding of the efficiency of female resistance to male sexually coercive behaviour is key to understanding how sexual conflict contributes to population level dynamics and ultimately to the evolution of sexually antagonistic traits. Overlooked within this context are plastic physiological responses of traits within the lifetime of females that could moderate the energetic cost imposed by coercive males. Here, we examined whether conflict over the frequency and timing of mating between male and female guppies Poecilia reticulata can induce changes in swimming performance and aerobic capacity in females as they work to escape harassment by males. Females exposed to higher levels of harassment over a 5-month period used less oxygen to swim at a given speed, but displayed no difference in resting metabolic rate, maximal metabolic rate, maximal sustained swimming speed or aerobic scope compared to females receiving lower levels of harassment. The observed increase in swimming efficiency is at least partially related to differences in swimming mechanics, likely brought on by a training effect of increased activity, as highly harassed females spent less time performing pectoral fin-assisted swimming. Sexual conflict results in sexually antagonistic traits that impose a variety of costs, but our results show that females can reduce costs through phenotypic plasticity. It is also possible that phenotypic plasticity in swimming physiology or mechanics in response to sexual coercion can potentially give females more control over matings and affect which male traits are under selection

    Continuous Trait-Based Particle Swarm Optimisation (CTB-PSO)

    Get PDF
    Copyright © 2012 Springer Verlag. The final publication is available at link.springer.com8th International Conference, ANTS 2012, Brussels, Belgium, September 12-14, 2012. ProceedingsIn natural flocks, individuals are often of the same species, but there exists considerable variation in the traits possessed by each individual. In much the same way as humans display varied levels of aggression, gregariousness and inquisitiveness, so do the animals on which PSO is based [1]. Recent research has shown that this disparity of behaviour is very important in the ability of the flock to solve problems effectively, which might have profound implications for PSO. One of the key aspects is that although certain behaviour types (e.g. more adventurous individuals) might individually be better at problem solving; selecting for a group that all have adventurous traits has been shown to reduce the performance of the flock as a whole [1]. Therefore a flock that has a variety of behaviours leads to better performance in natural systems and it is this that motivates the work here. This paper explores a variant of PSO known as Continuous Trait-Based PSO (CTB-PSO) where individuals within a swarm have traits based on a continuous scale as opposed to discrete behaviour groupings

    Predation risk as a driving force for phenotypic assortment: a cross-population comparison

    Get PDF
    addresses: School of Biological Sciences, College of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK. [email protected]: PMCID: PMC2674500types: Comparative Study; Journal Article; Research Support, Non-U.S. Gov't© Royal Society, 2009. Post print version of article deposited in accordance with SHERPA RoMEO guidelines. The final published version is available from: http://rspb.royalsocietypublishing.org/content/276/1663/1899Frequency-dependent predation has been proposed as a general mechanism driving the phenotypic assortment of social groups via the 'oddity effect', which occurs when the presence of odd individuals in a group allows a predator to fixate on a single prey item, increasing the predator's attack-to-kill ratio. However, the generality of the oddity effect has been debated and, previously, there has not been an ecological assessment of the role of predation risk in driving the phenotypic assortment of social groups. Here, we compare the levels of body length assortment of social groups between populations of the Trinidadian guppy (Poecilia reticulata) that experience differences in predation risk. As predicted by the oddity effect hypothesis, we observe phenotypic assortment by body length to be greater under high predation risk. However, we found that a number of low-predation populations were also significantly assorted by body length, suggesting that other mechanisms may have a role to play

    Male sexually coercive behaviour drives increased swimming efficiency in female guppies

    Get PDF
    Sexual coercion of females by males is widespread across sexually reproducing species. It stems from a conflict of interest over reproduction and exerts selective pressure on both sexes. For females, there is often a significant energetic cost to exposure to male sexually coercive behaviours. Our understanding of the efficiency of female resistance to male sexually coercive behaviour is key to understanding how sexual conflict contributes to population level dynamics and ultimately to the evolution of sexually antagonistic traits. Overlooked within this context are plastic physiological responses of traits within the lifetime of females that could moderate the energetic cost imposed by coercive males. Here we examined whether conflict over the frequency and timing of mating between male and female guppies Poecilia reticulata can induce changes in swimming performance and aerobic capacity in females as they work to escape harassment by males. Females exposed to higher levels of harassment over a five month period used less oxygen to swim at a given speed, but displayed no difference in resting metabolic rate, maximal metabolic rate, maximal sustained swimming speed or aerobic scope compared to females receiving lower levels of harassment. The observed increase in swimming efficiency is at least partially related to differences in swimming mechanics, likely brought on by a training effect of increased activity, as highly harassed females spent less time performing pectoral fin-assisted swimming. Sexual conflict results in sexually antagonistic traits that impose a variety of costs, but our results show that females can reduce costs through phenotypic plasticity. It is also possible that phenotypic plasticity in swimming physiology or mechanics in response to sexual coercion can potentially give females more control over matings and affect which male traits are under selection.NERCLeverhulme Early Career FellowshipLeverhulme TrustER

    Linking social network structure and function to social preferences

    Full text link
    Social network structures play an important role in the lives of humans and non-human animals by affecting wellbeing, the spread of disease and information, and evolutionary processes. Nevertheless, we still lack a good understanding of how these structures emerge from individual behaviour. Here we present a general model for the emergence of social structures, which is based on a key aspect of real social systems observed across species, namely social preferences for traits (individual characteristics such as age, sex, etc.). We first show that the model can generate diverse artificial social structures, and consider its potential for being combined with real network data. We then use the model to gain fundamental insights into how two main categories of social preferences (similarity and popularity) affect social structure and function. The results show that the types of social preference, in combination with the types of trait they are used with, can have important consequences for the spread of information and disease, and the robustness of social structures against fragmentation. The results also suggest that symmetric degree distributions could be expected to be common in social networks. More generally, the study implies that trait-based social preferences can have consequences for social systems that go far beyond their effect on direct benefits from social partners. We discuss the implications of the results for social evolution.Comment: 19 pages, + 16 pages supplementary material. 4 figures, + 11 supplementary figure

    Behavioural trait assortment in a social network: Patterns and implications

    Get PDF
    This a post-print, author-produced version of an article accepted for publication in Behavioral Ecology and Sociobiology. Copyright © 2009 Springer Verlag. The definitive version is available at http://link.springer.com/article/10.1007%2Fs00265-009-0802-x#The social fine structure of a population plays a central role in ecological and evolutionary processes. Whilst many studies have investigated how morphological traits such as size affect social structure of populations, comparatively little is known about the influence of behaviours such as boldness and shyness. Using information on social interactions in a wild population of Trinidadian guppies (Poecilia reticulata), we construct a social network. For each individual in the network, we quantify its behavioural phenotype using two measures of boldness, predator inspection tendency, a repeatable and reliably measured behaviour well studied in the context of co-operation, and shoaling tendency. We observe striking heterogeneity in contact patterns, with strong ties being positively assorted and weak ties negatively assorted by our measured behavioural traits. Moreover, shy fish had more network connections than bold fish and these were on average stronger. In other words, social fine structure is strongly influenced by behavioural trait. We assert that such structure will have implications for the outcome of selection on behavioural traits and we speculate that the observed positive assortment may act as an amplifier of selection contributing to the maintenance of co-operation during predator inspection

    Partial sex linkage and linkage disequilibrium on the guppy sex chromosome

    Get PDF
    The guppy Y chromosome has been considered a model system for the evolution of suppressed recombination between sex chromosomes, and it has been proposed that complete sex‐linkage has evolved across about 3 Mb surrounding this fish's sex‐determining locus, followed by recombination suppression across a further 7 Mb of the 23 Mb XY pair, forming younger “evolutionary strata”. Sequences of the guppy genome show that Y is very similar to the X chromosome. Knowing which parts of the Y are completely nonrecombining, and whether there is indeed a large completely nonrecombining region, are important for understanding its evolution. Here, we describe analyses of PoolSeq data in samples from within multiple natural populations from Trinidad, yielding new results that support previous evidence for occasional recombination between the guppy Y and X. We detected recent demographic changes, notably that downstream populations have higher synonymous site diversity than upstream ones and other expected signals of bottlenecks. We detected evidence of associations between sequence variants and the sex‐determining locus, rather than divergence under a complete lack of recombination. Although recombination is infrequent, it is frequent enough that associations with SNPs can suggest the region in which the sex‐determining locus must be located. Diversity is elevated across a physically large region of the sex chromosome, conforming to predictions for a genome region with infrequent recombination that carries one or more sexually antagonistic polymorphisms. However, no consistently male‐specific variants were found, supporting the suggestion that any completely sex‐linked region may be very small

    Association patterns and foraging behaviour in natural and artificial guppy shoals

    Get PDF
    Animal groups are often nonrandom assemblages of individuals that tend to be assorted by factors such as sex, body size, relatedness and familiarity. Laboratory studies using fish have shown that familiarity among shoal members confers a number of benefits to individuals, such as increased foraging success. However, it is unclear whether fish in natural shoals obtain these benefits through association with familiars. We investigated whether naturally occurring shoals of guppies, Poecilia reticulata, are more adept at learning a novel foraging task than artificial (in which we selected shoal members randomly) shoals. We used social network analysis to compare the structures of natural and artificial shoals and examined whether shoal organization predicts patterns of foraging behaviour. Fish in natural shoals benefited from increased success in the novel foraging task compared with fish in artificial shoals. Individuals in natural shoals showed a reduced latency to approach the novel feeder, followed more and formed smaller subgroups compared to artificial shoals. Our findings show that fish in natural shoals do gain foraging benefits and that this may be facilitated by a reduced perception of risk among familiarized individuals and/or enhanced social learning mediated by following other individuals and small group sizes. Although the structure of shoals was stable over time, we found no direct relationship between shoal social structure and patterns of foraging behaviour

    Distinguishing Social from Nonsocial Navigation in Moving Animal Groups

    Get PDF
    Many animals, such as migrating shoals of fish, navigate in groups. Knowing the mechanisms involved in animal navigation is important when it comes to explaining navigation accuracy, dispersal patterns, population and evolutionary dynamics, and consequently, the design of conservation strategies. When navigating toward a common target, animals could interact socially by sharing available information directly or indirectly, or each individual could navigate by itself and aggregations may not disperse because all animals are moving toward the same target. Here we present an analysis technique that uses individual movement trajectories to determine the extent to which individuals in navigating groups interact socially, given knowledge of their target. The basic idea of our approach is that the movement directions of individuals arise from a combination of responses to the environment and to other individuals. We estimate the relative importance of these responses, distinguishing between social and nonsocial interactions. We develop and test our method, using simulated groups, and we demonstrate its applicability to empirical data in a case study on groups of guppies moving toward shelter in a tank. Our approach is generic and can be extended to different scenarios of animal group movement. © 2012 by The University of Chicago

    Ecological Knowledge, Leadership, and the Evolution of Menopause in Killer Whales

    Get PDF
    SummaryClassic life-history theory predicts that menopause should not occur because there should be no selection for survival after the cessation of reproduction [1]. Yet, human females routinely live 30 years after they have stopped reproducing [2]. Only two other species—killer whales (Orcinus orca) and short-finned pilot whales (Globicephala macrorhynchus) [3, 4]—have comparable postreproductive lifespans. In theory, menopause can evolve via inclusive fitness benefits [5, 6], but the mechanisms by which postreproductive females help their kin remain enigmatic. One hypothesis is that postreproductive females act as repositories of ecological knowledge and thereby buffer kin against environmental hardships [7, 8]. We provide the first test of this hypothesis using a unique long-term dataset on wild resident killer whales. We show three key results. First, postreproductively aged females lead groups during collective movement in salmon foraging grounds. Second, leadership by postreproductively aged females is especially prominent in difficult years when salmon abundance is low. This finding is critical because salmon abundance drives both mortality and reproductive success in resident killer whales [9, 10]. Third, females are more likely to lead their sons than they are to lead their daughters, supporting predictions of recent models [5] of the evolution of menopause based on kinship dynamics. Our results show that postreproductive females may boost the fitness of kin through the transfer of ecological knowledge. The value gained from the wisdom of elders can help explain why female resident killer whales and humans continue to live long after they have stopped reproducing
    corecore