33 research outputs found

    Medical Encounter Characteristics of HIV Seroconverters in the US Army and Air Force, 2000–2004

    Get PDF
    BACKGROUND AND METHODS: Active duty US Army and Air Force military personnel undergo mandatory biennial HIV antibody screening. We compared pre- and post-HIV seroconversion health status by conducting a case-control study, which evaluated all medical encounters and sociodemographic factors among incident HIV seroconverters and HIV-negative controls from June 2000 through February 2004. RESULTS: A total of 274 HIV seroconverters and 6205 HIV-negative personnel were included. In multivariate analysis restricted to male personnel (cases = 261, controls = 5801), single marital status (adjusted odds ratio [AOR] = 14.37), clinical indicators or symptoms within four years of HIV diagnosis (AOR = 6.22), black race (AOR = 5.88), nonindicator clinical syndromes within 2 years of HIV diagnosis (AOR = 3.31), any mental disorder within 4 years of HIV diagnosis (AOR = 3.04), increasing service-connected time (AOR = 1.69), and older age (AOR = 1.12) were associated with HIV diagnosis among males. A prior history of a sexually transmitted infection (STI) was associated with post-HIV seroconversion STI (OR(M-H) = 4.10). Similarly, a prior history of mental disorder was associated with post-HIV seroconversion mental disorder (OR(M-H) = 4.98). Forty-seven (18%) male cases were hospitalized at least once after HIV diagnosis; infectious diseases, and mental disorders made up 53% of initial admissions. CONCLUSIONS: HIV seroconversion was associated with increased health care-seeking behavior, STIs, and mental disorders, some of which may be amenable to screening. The higher STI rate after HIV diagnosis may partially be a consequence of monitoring, but secondary transmission of STI and possibly HIV require further definition and subsequent tailored preventive interventions

    Identification of Markers that Distinguish Monocyte-Derived Fibrocytes from Monocytes, Macrophages, and Fibroblasts

    Get PDF
    The processes that drive fibrotic diseases are complex and include an influx of peripheral blood monocytes that can differentiate into fibroblast-like cells called fibrocytes. Monocytes can also differentiate into other cell types, such as tissue macrophages. The ability to discriminate between monocytes, macrophages, fibrocytes, and fibroblasts in fibrotic lesions could be beneficial in identifying therapies that target either stromal fibroblasts or fibrocytes. and in sections from human lung. We found that markers such as CD34, CD68, and collagen do not effectively discriminate between the four cell types. In addition, IL-4, IL-12, IL-13, IFN-γ, and SAP differentially regulate the expression of CD32, CD163, CD172a, and CD206 on both macrophages and fibrocytes. Finally, CD49c (α3 integrin) expression identifies a subset of fibrocytes, and this subset increases with time in culture.These results suggest that discrimination of monocytes, macrophages, fibrocytes, and fibroblasts in fibrotic lesions is possible, and this may allow for an assessment of fibrocytes in fibrotic diseases

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Use of Stored Serum from Uganda for Development and Evaluation of a Human Immunodeficiency Virus Type 1 Testing Algorithm Involving Multiple Rapid Immunoassays

    No full text
    We report the development and evaluation of a human immunodeficiency virus type 1 testing algorithm consisting of three rapid antibody detection tests. Stored serum samples from Uganda were utilized with a final algorithm sensitivity of 100% and a specificity of 98.9% (95% confidence interval, 98.6% to 99.3%)

    Animal Production Systems for Pasture-Based Livestock Production (NRAES 171)

    Full text link
    This 246 page publication (NRAES-171) was originally published by the Natural Resource, Agriculture, and Engineering Service (NRAES, previously known as the Northeast Regional Agricultural Engineering Service), a multi-university program in the Northeast US disbanded in 2011. Plant and Life Sciences Publishing (PALS) was subsequently formed to manage the NRAES catalog. Ceasing operations in 2018, PALS was a program of the Department of Horticulture in the College of Agriculture and Life Sciences (CALS) at Cornell University. PALS assisted university faculty in publishing, marketing and distributing books for small farmers, gardeners, land owners, workshops, college courses, and consumers.The book explores foraging behavior, basic animal nutrition, and parasite control for pasture-based animals with chapters devoted to beef, dairy, sheep, goat, and horse nutrition and management
    corecore