470 research outputs found

    Learning to Transform Time Series with a Few Examples

    Get PDF
    We describe a semi-supervised regression algorithm that learns to transform one time series into another time series given examples of the transformation. This algorithm is applied to tracking, where a time series of observations from sensors is transformed to a time series describing the pose of a target. Instead of defining and implementing such transformations for each tracking task separately, our algorithm learns a memoryless transformation of time series from a few example input-output mappings. The algorithm searches for a smooth function that fits the training examples and, when applied to the input time series, produces a time series that evolves according to assumed dynamics. The learning procedure is fast and lends itself to a closed-form solution. It is closely related to nonlinear system identification and manifold learning techniques. We demonstrate our algorithm on the tasks of tracking RFID tags from signal strength measurements, recovering the pose of rigid objects, deformable bodies, and articulated bodies from video sequences. For these tasks, this algorithm requires significantly fewer examples compared to fully-supervised regression algorithms or semi-supervised learning algorithms that do not take the dynamics of the output time series into account

    Pooling-Invariant Image Feature Learning

    Full text link
    Unsupervised dictionary learning has been a key component in state-of-the-art computer vision recognition architectures. While highly effective methods exist for patch-based dictionary learning, these methods may learn redundant features after the pooling stage in a given early vision architecture. In this paper, we offer a novel dictionary learning scheme to efficiently take into account the invariance of learned features after the spatial pooling stage. The algorithm is built on simple clustering, and thus enjoys efficiency and scalability. We discuss the underlying mechanism that justifies the use of clustering algorithms, and empirically show that the algorithm finds better dictionaries than patch-based methods with the same dictionary size

    Gradient-free Policy Architecture Search and Adaptation

    Full text link
    We develop a method for policy architecture search and adaptation via gradient-free optimization which can learn to perform autonomous driving tasks. By learning from both demonstration and environmental reward we develop a model that can learn with relatively few early catastrophic failures. We first learn an architecture of appropriate complexity to perceive aspects of world state relevant to the expert demonstration, and then mitigate the effect of domain-shift during deployment by adapting a policy demonstrated in a source domain to rewards obtained in a target environment. We show that our approach allows safer learning than baseline methods, offering a reduced cumulative crash metric over the agent's lifetime as it learns to drive in a realistic simulated environment.Comment: Accepted in Conference on Robot Learning, 201

    Learning Detection with Diverse Proposals

    Full text link
    To predict a set of diverse and informative proposals with enriched representations, this paper introduces a differentiable Determinantal Point Process (DPP) layer that is able to augment the object detection architectures. Most modern object detection architectures, such as Faster R-CNN, learn to localize objects by minimizing deviations from the ground-truth but ignore correlation between multiple proposals and object categories. Non-Maximum Suppression (NMS) as a widely used proposal pruning scheme ignores label- and instance-level relations between object candidates resulting in multi-labeled detections. In the multi-class case, NMS selects boxes with the largest prediction scores ignoring the semantic relation between categories of potential election. In contrast, our trainable DPP layer, allowing for Learning Detection with Diverse Proposals (LDDP), considers both label-level contextual information and spatial layout relationships between proposals without increasing the number of parameters of the network, and thus improves location and category specifications of final detected bounding boxes substantially during both training and inference schemes. Furthermore, we show that LDDP keeps it superiority over Faster R-CNN even if the number of proposals generated by LDPP is only ~30% as many as those for Faster R-CNN.Comment: Accepted to CVPR 201
    • …
    corecore