8 research outputs found

    Expression of chicken hepatic type I and type III iodothyronine deiodinases during embryonic development

    Get PDF
    In embryonic chicken liver (ECL) two types of iodothyronine deiodinases are expressed: D1 and D3. D1 catalyzes the activation as well as the inactivation of thyroid hormone by outer and inner ring deiodination, respectively. D3 only catalyzes inner ring deiodination. D1 and D3 have been cloned from mammals and amphibians and shown to contain a selenocysteine (Sec) residue. We characterized chicken D1 and D3 complementary DNAs (cDNAs) and studied the expression of hepatic D1 and D3 messenger RNAs (mRNAs) during embryonic development. Oligonucleotides based on two amino acid sequences strongly conserved in the different deiodinases (NFGSCTSecP and YIEEAH) were used for reverse transcription-PCR of poly(A+) RNA isolated from embryonic day 17 (E17) chicken liver, resulting in the amplification of two 117-bp DNA fragments. Screening of an E17 chicken liver cDNA library with these probes led to the isolation of two cDNA clones, ECL1711 and ECL1715. The ECL1711 clone was 1360 bp long and lacked a translation start site. Sequence alignment showed that it shared highest sequence identity with D1s from other vertebrates and that the coding sequence probably lacked the first five nucleotides. An ATG start codon was engineered by site-directed mutagenesis, generating a mutant (ECL1711M) with four additional codons (coding for MGTR). The open reading frame of ECL1711M coded for a 249-amino acid protein showing 58-62% identity with mammalian D1s. An in-frame TGA codon was located at position 127, which is translated as Sec in the presence ofa Sec insertion sequence (SECIS) identified in the 3'-untranslated region. Enzyme activity expressed in COS-1 cells by transfection with ECL1711M showed the same catalytic, substrate, and inhibitor specificities as native chicken D1. The ECL1715 clone was 1366 bp long and also lacked a translation start site. Sequence alignment showed that it was most homologous with D3 from other species and that the coding sequence lacked approximately the first 46 nucleotides. The deduced amino acid sequence showed 62-72% identity with the D3 sequences from other species, including a putative Sec residue at a corresponding position. The 3'-untranslated region of ECL1715 also contained a SECIS element. These results indicate that ECL1711 and ECL1715 are near-full-length cDNA clones for chicken D1 and D3 selenoproteins, respectively. The ontogeny of D1 and D3 expression in chicken liver was studied between E14 and 1 day after hatching (C1). D1 activity showed a gradual increase from E14 until C1, whereas D1 mRNA level remained relatively constant. D3 activity and mRNA level were highly significantly correlated, showing an increase from E14 to E17 and a strong decrease thereafter. These results suggest that the regulation of chicken hepatic D3 expression during embryonic development occurs predominantly at the pretranslational level

    Characterization of a propylthiouracil-insensitive type I iodothyronine deiodinase

    Get PDF
    Mammalian type I iodothyronine deiodinase (D1) activates and inactivates thyroid hormone by outer ring deiodination (ORD) and inner ring deiodination (IRD), respectively, and is potently inhibited by propylthiouracil (PTU). Here we describe the cloning and characterization of a complementary DNA encoding a PTU-insensitive D1 from teleost fish (Oreochromis niloticus, tilapia). This complementary DNA codes for a protein of 248 amino acids, including a putative selenocysteine (Sec) residue, encoded by a TGA triplet, at position 126. The 3' untranslated region contains two putative Sec insertion sequence (SECIS) elements. Recombinant enzyme expressed in COS-1 cells catalyzes both ORD of T4 and rT3 and IRD of T3 and T3 sulfate with the same substrate specificity as native tilapia D1 (tD1), i.e. rT3 >> T4 > T3 sulfate > T3. Native and recombinant tD1 show equally low sensitivities to inhibition by PTU, iodoacetate, and gold thioglucose compared with the potent inhibitions observed with mammalian D1s. Because the residue 2 positions downstream from Sec is Pro in tD1 and in all (PTU-insensitive) type II and type III iodothyronine deiodinases but Ser in all PTU-sensitive D1s, we prepared the Pro128Ser mutant of tD1. The mutant enzyme showed strongly decreased ORD and somewhat increased IRD activity, but was still insensitive to PTU. These results provide new information about the structure-activity relationship of D1 concerning two characteristic properties, i.e. catalysis of both ORD and IRD, and inhibition by PTU

    Thyroid Hormone Transporters MCT8 and OATP1C1 Control Skeletal Muscle Regeneration

    Get PDF
    Thyroid hormone (TH) transporters are required for the transmembrane passage of TH in target cells. In humans, inactivating mutations in the TH transporter MCT8 cause the Allan-Herndon-Dudley syndrome, characterized by severe neuromuscular symptoms and an abnormal TH serum profile, which is fully replicated in Mct8 knockout mice and Mct8/Oatp1c1 double-knockout (M/O DKO) mice. Analysis of tissue TH content and expression of TH-regulated genes indicate a thyrotoxic state in Mct8-deficient skeletal muscles. Both TH transporters are upregulated in activated satellite cells (SCs). In M/O DKO mice, we observed a strongly reduced number of differentiated SCs, suggesting an impaired stem cell function. Moreover, M/O DKO mice and mice lacking both transporters exclusively in SCs showed impaired skeletal muscle regeneration. Our data provide solid evidence for a unique gate-keeper function of MCT8 and OATP1C1 in SC activation, underscoring the importance of a finely tuned TH signaling during myogenesis. In this article, Mayerl and colleagues demonstrate that the thyroid hormone transporters MCT8 and OATP1C1 are unique gate-keepers in activated muscle stem cells. The expression of both transporters increases upon activation of muscle stem cells, while loss of MCT8 and OATP1C1 expression results in impaired muscle stem cell differentiation

    Tissue-specific suppression of thyroid hormone signaling in various mouse models of aging

    Get PDF
    DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNAdamaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging

    Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain

    No full text
    Organic anion-transporting polypeptide 1c1 (Oatp1c1) (also known as Slco1c1 and Oatp14) belongs to the family of Oatp and has been shown to facilitate the transport of T 4. In the rodent brain, Oatp1c1 is highly enriched in capillary endothelial cells and choroid plexus structures where it may mediate the entry of T 4 into the central nervous system. Here, we describe the generation and first analysis of Oatp1c1-deficient mice. Oatp1c1 knockout (KO) mice were born with the expected frequency, were n

    Deiodinase activity is present in Xenopus laevis during early embryogenesis

    No full text
    Thyroid hormones orchestrate amphibian metamorphosis. The type 2 and type 3 deiodinases make vital contributions to this process by controlling levels of the thyroid hormones T4 and T3 available to different tissues. Because the tadpole thyroid gland is not functional until stage NF44, it has been widely assumed that thyroid signaling is absent during amphibian early development, thyroid hormone only becoming a major regulator during premetamorphic stages. Similarly, in mammals, thyroid function is known to be essential to neuronal development, especially during the perinatal stages, but again little is known about early stages of development. Here we demonstrate that key elements of thyroid hormone signaling are present during early development of Xenopus. In particular, we find functional thyroid hormone-activating deiodinases and significant levels of their substrates, T4 and T3, during early embryogenesis. Furthermore, we have further characterized a recently identified deiodinase in amphibians, homologous to mammalian type 1 deiodinase (D1). This enzyme is expressed in marked, spatially defined patterns during embryogenesis. The patterns of expression of type 1 deiodinase are distinct from those of type 2 and type 3 deiodinases. Deiodinase expression is found in neurogenic areas from stage NF30 onward, both in the central and peripheral nervous systems. We conclude that both activating and inactivating deiodinases show dynamic patterns of expression during early embryogenesis in amphibians, particularly in neurogenic areas. These findings suggest that thyroid hormone signaling is a key component of early neuronal development in vertebrates. Copyrigh

    Tissue thyroid hormone levels in critical illness

    No full text
    Context: Pronounced alterations in serum thyroid hormone levels occur during critical illness. T3 decreases and rT3 increases, the magnitudes of which are related to the severity of disease. It is unclear whether these changes are associated with decreased tissue T3 concentrations and, thus, reduced thyroid hormone bioactivity. Patients and Study Questions: We therefore investigated, in 79 patients who died after intensive care and who did or did not receive thyroid hormone treatment, whether total serum thyroid hormone levels correspond to tissue levels in liver and muscle. Furthermore, we investigated the relationship between tissue thyroid hormone levels, deiodinase a

    Knockdown of type 3 iodothyronine deiodinase severely perturbs both embryonic and early larval development in zebrafish

    No full text
    Exposure to appropriate levels of thyroid hormones (THs) at the right time is of key importance for normal development in all vertebrates. Type 3 iodothyronine deiodinase (D3) is the prime TH-inactivating enzyme, and its expression is highest in the early stages of vertebrate development, implying that it may be necessary to shield developing tissues from overexposure to THs. We used antisense morpholino knockdown to examine the role of D3 during early development in zebrafish. Zebrafish possess 2 D3 genes, dio3a and dio3b. Here, we show that both genes are expressed during development and both contribute to in vivo D3 activity. However, dio3b mRNA levels inembryosare higher, and the effects of dio3b knockdownonD3activityandonthe resulting phenotype are more severe. D3 knockdown induced an overall delay in development, as determined by measurements of otic vesicle length, eye and ear size, and body length. The time of hatching was also severely delayed in D3-knockdown embryos. Importantly, we also observed a severe disturbance of several aspects of development. Swim bladder development and inflation was aberrant as was the development of liver and intestine. Furthermore, D3-knockdown larvae spent significantly less time moving, and both embryos and larvae exhibited perturbed escape responses, suggesting that D3 knockdown affects muscle development and/or functioning. These data indicate that D3 is essential for normal zebrafish embryonic and early larval development and show the value of morpholino knockdown in this model to further elucidate the specific role of D3 in some aspects of vertebrate development. Copyrigh
    corecore