9 research outputs found

    Chemical sensor system

    Get PDF
    A chemical sensing apparatus and method for the detection of sub parts-per-trillion concentrations of molecules in a sample by optimizing electron utilization in the formation of negative ions is provided. A variety of media may be sampled including air, seawater, dry sediment, or undersea sediment. An electrostatic mirror is used to reduce the kinetic energy of an electron beam to zero or near-zero kinetic energy

    High-efficiency electron ionizer for a mass spectrometer array

    Get PDF
    The present invention provides an improved electron ionizer for use in a quadrupole mass spectrometer. The improved electron ionizer includes a repeller plate that ejects sample atoms or molecules, an ionizer chamber, a cathode that emits an electron beam into the ionizer chamber, an exit opening for excess electrons to escape, at least one shim plate to collimate said electron beam, extraction apertures, and a plurality of lens elements for focusing the extracted ions onto entrance apertures

    Electronic drive and acquisition system for mass spectrometry

    Get PDF
    The present invention discloses a mixed signal RF drive electronics board that offers small, low power, reliable, and customizable method for driving and generating mass spectra from a mass spectrometer, and for control of other functions such as electron ionizer, ion focusing, single-ion detection, multi-channel data accumulation and, if desired, front-end interfaces such as pumps, valves, heaters, and columns

    Response of QIT-MS to Noble Gas Isotopic Ratios in a Simulated Venus Flyby

    No full text
    The primary objective of the present study is to investigate the science return of future Venus atmosphere probe mission concepts using the Quadrupole Ion Trap (QIT) Mass Spectrometer (MS) Instrument (QIT-MS-I). We demonstrate the use of Monte-Carlo simulations in determining the optimal ion trapping conditions and focus the analysis on retrieving isotope ratios of noble gases in the model sample of the Venus atmosphere. Sampling takes place at a constant velocity of ~10 km/s between 112−110 km altitude and involves the use of getter pumps to remove all chemically-active species, retaining inert noble gases. The enriched sample is leaked into passively pumped vacuum chamber where it is analyzed by the QIT-MS sensor (QIT-MS-S) for 40 minutes. The simulated mass spectrum, as recorded by the QIT-MS-S, is deconvoluted using random walk algorithm to reveal relative abundances of noble gas isotopes. The required precision and accuracy of the deconvolution method is benchmarked against the a priori known model composition of the atmospheric sample

    Venus Origins Explorer (VOX) concept: A proposed new frontiers mission

    No full text
    Of all known planets and moons in the galaxy, Venus remains the most Earth-like in terms of size, composition, surface age, and distance from the Sun [1]. Although not currently habitable, Venus lies within the Sun's 'Goldilocks zone', and may have been habitable before Earth [2]. What caused Venus to follow a divergent path to its present hostile environment, devoid of oceans, magnetic field, and plate tectonics that have enabled Earth's long-term habitability? The proposed Venus Origins Explorer (VOX) would determine how the evolution of Earth's twin diverged, and enable breakthroughs in our understanding of terrestrial planet evolution and habitability in our own solar system - and others. The VOX mission concept consists of two flight elements: 1) an Atmosphere Sampling Vehicle (ASV), and 2) an Orbiter that accommodates the ASV and also provides global reconnaissance of Venus using just two instruments and a gravity science investigation. The ASV would be released shortly after Venus Orbit Insertion and dips into the well-mixed atmosphere at 112 km. It delivers an in situ atmospheric sample to the Venus Original Constituents Experiment (VOCE) to measure noble gases, revealing the source and evolution of Venus' volatiles. The Orbiter uses the Venus Emissivity Mapper (VEM) to map global surface mineralogy and search for active or recent volcanism. Venus Interferometric Synthetic Aperture Radar (VISAR) generates long-awaited high-resolution imaging and digital elevation models, and possible deformation maps with repeat-pass interferometry, a new tool for planetary science. Ka-band tracking increases the gravity field resolution, enabling global elastic thickness estimates. Using a low risk implementation and just three instruments plus gravity science, VOX conducts a comprehensive global investigation of Venus' dynamic surface. As described below, VOX meets and exceeds the science objectives prescribed in the National Academy of Sciences most recent Planetary Science Decadal Survey. VOX is the logical next mission to Venus because it: 1) addresses top priority atmosphere, surface, and interior science objectives; 2) produces key global datasets to enable comparative planetology; 3) provides high-resolution global topography, composition, and imaging necessary to optimize future landed missions; 4) creates opportunities for revolutionary discoveries and observations of ongoing Venus geological activity, over a three-year period from an orbital platform plus an in situ atmospheric sampling vehicle; and 5) fuels the next generation of scientists by providing 44 Tb of science data. Additionally, VOX offers NASA the ability to select and fly small sats at Venus by providing relay and the ability to trade aerobraking duration for additional mass capability

    Fractures of the Distal End of the Radius: A Clinical and Statistical Study of End Results

    No full text
    corecore