14 research outputs found

    Reinterpretation of LHC results for new physics: Status and recommendations after run 2

    Get PDF
    We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data

    Shedding light on X17: community report

    Get PDF
    The workshop “Shedding light on X17” brings together scientists looking for the existence of a possible new light particle, often referred to as X17. This hypothetical particle can explain the resonant structure observed at ∌ 17 MeV in the invariant mass of electron-positron pairs, produced after excitation of nuclei such as 8Be and 4He by means of proton beams at the Atomki Laboratory in Debrecen. The purpose of the workshop is to discuss implications of this anomaly, in particular theoretical interpretations as well as present and future experiments aiming at confirming the result and/or at providing experimental evidence for its interpretation

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    Selective enhancement of the QCD axion couplings

    No full text
    We present a mechanism wherein the QCD axion coupling to nucleons, photons, or electrons can be enhanced selectively without increasing the axion mass. We focus in particular on the axion-nucleon couplings that are generally considered to be largely model independent, and we show how nucleophilic axion models can be constructed. We discuss the implications of a nucleophilic axion for astrophysics, cosmology, and laboratory searches. We present a model with enhanced axion couplings to nucleons and photons that can provide an excellent fit to the anomalous emission of hard x-rays recently observed from a group of nearby neutron stars, and we argue that such a scenario can be thoroughly tested in forthcoming axion-search experiments

    Resonant search for the X17 boson at PADME

    No full text
    We discuss the experimental reach of the Frascati PADME experiment in searching for new light bosons via their resonant production in positron annihilation on fixed target atomic electrons. A scan in the mass range around 17 MeV will thoroughly probe the particle physics interpretation of the anomaly observed by the ATOMKI nuclear physics experiment. In particular, for the case of a spin-1 boson, the viable parameter space can be fully covered in a few months of data taking

    Invisible decays of axion-like particles: constraints and prospects

    No full text
    Axion-like particles (ALPs) can provide a portal to new states of a dark sector. We study the phenomenology of this portal when the ALP mainly decays invisibly, while its interaction with the standard model sector proceeds essentially via its coupling to electrons and/or photons. We reanalyse existing limits from various collider and beam dump experiments, including in particular ALP production via electron/positron interactions, in addition to the usual production through ALP-photon coupling. We further discuss the interplay between these limits and the intriguing possibility of explaining simultaneously the muon and electron magnetic moment anomalies. Finally, we illustrate the prospects of ALP searches at the LNF positron fixed-target experiment PADME, and the future reach of an upgraded experimental setup

    Snowmass 2021 Rare & Precision Frontier (RF6): Dark Matter Production at Intensity-Frontier Experiments

    No full text
    Dark matter particles can be observably produced at intensity-frontier experiments, and opportunities in the next decade will explore important parameter space motivated by thermal DM models, the dark sector paradigm, and anomalies in data. This whitepaper describes the motivations, detection strategies, prospects and challenges for such searches, as well as synergies and complementarity both within RF6 and across HEP

    A Snowmass Whitepaper: Dark Matter Production at Intensity-Frontier Experiments

    No full text
    Dark matter particles can be observably produced at intensity-frontier experiments, and opportunities in the next decade will explore important parameter space motivated by thermal DM models, the dark sector paradigm, and anomalies in data. This whitepaper describes the motivations, detection strategies, prospects and challenges for such searches, as well as synergies and complementarity both within RF6 and across HEP

    Snowmass 2021 Rare & Precision Frontier (RF6): Dark Matter Production at Intensity-Frontier Experiments

    No full text
    Dark matter particles can be observably produced at intensity-frontier experiments, and opportunities in the next decade will explore important parameter space motivated by thermal DM models, the dark sector paradigm, and anomalies in data. This whitepaper describes the motivations, detection strategies, prospects and challenges for such searches, as well as synergies and complementarity both within RF6 and across HEP
    corecore