156 research outputs found

    Mitosis-independent survivin gene expression in vivo and regulation by p53

    Get PDF
    Survivin is an essential mitotic gene, and this has been speculated to reflect its primary function in development and cancer. Here, we generated a knock-in transgenic mouse (SVVp-GFP) in which a green fluorescent protein (GFP) reporter gene was placed under the control of the survivin promoter that regulates transcription at mitosis. The expression of endogenous survivin was widespread in mouse tissues during development and shortly after birth. In contrast, GFP reactivity was undetectable in transgenic mouse embryos, and was largely limited postnatally to mitotic cells in the testes. Double transgenic mice generated in the tumor-prone Min/+ background exhibited intestinal adenomas that strongly expressed endogenous survivin, but only isolated GFP-positive cells. Conversely, dysplastic adenomas (16%) stained intensely for GFP, and revealed focal reactivity for mutant, but not wild-type, p53. The expression of GFP was increased by approximately 10-fold in p53(-/-) as opposed to p53(+/+) HCT116 colorectal cancer cells, and reintroduction of p53 in p53(-/-) cells abolished GFP expression. Therefore, the mitotic transcription of the survivin gene is highly restricted in vivo, and unexpectedly negatively regulated by p53. Contrary to a commonly held view, the dominant function(s) of survivin in development and tumor ontogeny are largely cell cycle-independent

    Survivin at a glance

    Get PDF
    Survivin (also known as BIRC5) is an evolutionarily conserved eukaryotic protein that is essential for cell division and can inhibit cell death. Normally it is only expressed in actively proliferating cells, but is upregulated in most, if not all cancers; consequently, it has received significant attention as a potential oncotherapeutic target. In this Cell Science at a Glance article and accompanying poster, we summarise our knowledge of survivin 21 years on from its initial discovery. We describe the structure, expression and function of survivin, highlight its interactome and conclude by describing anti-survivin strategies being trialled

    Activated checkpoint kinase 2 provides a survival signal for tumor cells

    Get PDF
    Tumor cells often become resistant to DNA damage-based therapy; however, the underlying mechanisms are not yet understood. Here, we show that tumor cells exposed to DNA damage counteract cell death by releasing the antiapoptotic protein, survivin, from mitochondria. This is independent of p53, and requires activated checkpoint kinase 2 (Chk2), a putative tumor suppressor. Molecular or genetic targeting of Chk2 prevents the release of survivin from mitochondria, enhances DNA damage-induced tumor cell apoptosis, and inhibits the growth of resistant in vivo tumors. Therefore, activated Chk2 circumvents its own tumor-suppressive functions by promoting tumor cell survival. Inhibiting Chk2 in combination with DNA-damaging agents may provide a rational approach for treating resistant tumors

    Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer.

    Get PDF
    Tumors adapt to an unfavorable microenvironment by controlling the balance between cell proliferation and cell motility, but the regulators of this process are largely unknown. Here, we show that an alternatively spliced isoform of syntaphilin (SNPH), a cytoskeletal regulator of mitochondrial movements in neurons, is directed to mitochondria of tumor cells. Mitochondrial SNPH buffers oxidative stress and maintains complex II-dependent bioenergetics, sustaining local tumor growth while restricting mitochondrial redistribution to the cortical cytoskeleton and tumor cell motility. Conversely, introduction of stress stimuli to the microenvironment, including hypoxia, acutely lowered SNPH levels, resulting in bioenergetics defects and increased superoxide production. In turn, this suppressed tumor cell proliferation but increased tumor cell invasion via greater mitochondrial trafficking to the cortical cytoskeleton. Loss of SNPH or expression of an SNPH mutant lacking the mitochondrial localization sequence resulted in increased metastatic dissemination in xenograft or syngeneic tumor models in vivo. Accordingly, tumor cells that acquired the ability to metastasize in vivo constitutively downregulated SNPH and exhibited higher oxidative stress, reduced cell proliferation, and increased cell motility. Therefore, SNPH is a stress-regulated mitochondrial switch of the cell proliferation-motility balance in cancer, and its pathway may represent a therapeutic target

    Syntaphilin Ubiquitination Regulates Mitochondrial Dynamics and Tumor Cell Movements.

    Get PDF
    Syntaphilin (SNPH) inhibits the movement of mitochondria in tumor cells, preventing their accumulation at the cortical cytoskeleton and limiting the bioenergetics of cell motility and invasion. Although this may suppress metastasis, the regulation of the SNPH pathway is not well understood. Using a global proteomics screen, we show that SNPH associates with multiple regulators of ubiquitin-dependent responses and is ubiquitinated by the E3 ligase CHIP (or STUB1) on Lys111 and Lys153 in the microtubule-binding domain. SNPH ubiquitination did not result in protein degradation, but instead anchored SNPH on tubulin to inhibit mitochondrial motility and cycles of organelle fusion and fission, that is dynamics. Expression of ubiquitination-defective SNPH mutant Lys111!Arg or Lys153!Arg increased the speed and distance traveled by mitochondria, repositioned mitochondria to the cortical cytoskeleton, and supported heightened tumor chemotaxis, invasion, and metastasis in vivo. Interference with SNPH ubiquitination activated mitochondrial dynamics, resulting in increased recruitment of the fission regulator dynamin-related protein-1 (Drp1) to mitochondria and Drp1-dependent tumor cell motility. These data uncover nondegradative ubiquitination of SNPH as a key regulator of mitochondrial trafficking and tumor cell motility and invasion. In this way, SNPH may function as a unique, ubiquitination-regulated suppressor of metastasis

    A survivin gene signature predicts aggressive tumor behavior

    Get PDF
    Gene signatures that predict aggressive tumor behavior at the earliest stages of disease, ideally before overt tissue abnormalities, are urgently needed. To search for such genes, we generated a transgenic model of survivin, an essential regulator of cell division and apoptosis overexpressed in cancer. Transgenic expression of survivin in the urinary bladder did not cause histologic abnormalities of the urothelium. However, microarray analysis revealed that survivin-expressing bladders exhibited profound changes in gene expression profile affecting extracellular matrix and inflammatory genes. Following exposure to a bladder carcinogen, N-butyl-N-(4-hydroxybutyl) nitrosamine (OH-BBN), survivin transgenic animals exhibited accelerated tumor progression, preferential incidence of tumors as compared with premalignant lesions, and dramatically abbreviated survival. Conversely, transgenic expression of a survivin Thr34--\u3eAla dominant-negative mutant did not cause changes in gene expression or accelerated tumor progression after OH-BBN treatment. Therefore, survivin expression induces global transcriptional changes in the tissue microenvironment that may promote tumorigenesis. Detection of survivin or its associated gene signature may provide an early biomarker of aggressive tumor behavior before the appearance of tissue abnormalities

    A neuronal network of mitochondrial dynamics regulates metastasis.

    Get PDF
    The role of mitochondria in cancer is controversial. Using a genome-wide shRNA screen, we now show that tumours reprogram a network of mitochondrial dynamics operative in neurons, including syntaphilin (SNPH), kinesin KIF5B and GTPase Miro1/2 to localize mitochondria to the cortical cytoskeleton and power the membrane machinery of cell movements. When expressed in tumours, SNPH inhibits the speed and distance travelled by individual mitochondria, suppresses organelle dynamics, and blocks chemotaxis and metastasis, in vivo. Tumour progression in humans is associated with downregulation or loss of SNPH, which correlates with shortened patient survival, increased mitochondrial trafficking to the cortical cytoskeleton, greater membrane dynamics and heightened cell invasion. Therefore, a SNPH network regulates metastatic competence and may provide a therapeutic target in cancer
    • …
    corecore