5 research outputs found

    The distal heme center in Bacillus subtilis succinate:menaquinone reductase is crucial for electron transfer to menaquinone

    No full text
    Succinate:quinone reductases are membrane-bound enzymes that catalyze electron transfer from succinate to quinone. Some enzymes in vivo reduce ubiquinone (exergonic reaction) whereas others reduce menaquinone (endergonic reaction). The succinate:menaquinone reductases all contain two heme groups in the membrane anchor of the enzyme: a proximal heme (heme b(P)) located close to the negative side of the membrane and a distal heme (heme b(D)) located close to the positive side of the membrane. Heme b(D) is a distinctive feature of the succinate:menaquinone reductases, but the role of this heme in electron transfer to quinone has not previously been analyzed. His28 and His113 are the axial ligands to heme b(D) in Bacillus subtilis succinate:menaquinone reductase. We have individually replaced these His residues with Leu and Met, respectively, resulting in assembled membrane- bound enzymes. The H28L mutant enzyme lacks succinate:quinone reductase activity probably due to a defective quinone binding site. The H113M mutant enzyme contains heme b(D) with raised midpoint potential and is impaired in electron transfer to menaquinone. Our combined experimental data show that the heme b(D) center, into which we include a quinone binding site, is crucial for succinate:menaquinone reductase activity. The results support a model in which menaquinone is reduced on the positive side of the membrane and the transmembrane electrochemical potential provides driving force for electron transfer from succinate via heme b(P) and heme b(D) to menaquinone

    The Distal Heme Center in Bacillus

    No full text

    Diethylaluminum chloride-co-initiated cationic polymerization of isoprene: dramatic effect of the nature of alkyl halide on the properties of synthesized polymers

    No full text
    The cationic polymerization of isoprene using alkyl halide/Et2AlCl initiating system (alkyl halide: tert-butyl chloride, tert-butyl bromide, 2-chloro-2-methylbutane and isopropyl chloride) at different temperatures has been studied. It was shown for the first time that using of tertiary alkyl halide in conjunction with Et2AlCl allowed to synthesize fully soluble solid thermoplastic polymers with reduced unsaturation (41–48 mol%) as well as relatively high glass transition temperature (52–60°С) and softening point (102–128°С). The substitution of tertiary alkyl halides on the secondary one (isopropyl chloride) results in the obtaining of cross-linked polymers due to the low activity of isopropyl chloride in chain transfer to alkyl halide. It was found that alkyl halide nature, the ratio of alkyl halide to Et2AlCl, duration and temperature of the polymerization of isoprene have dramatic effect on the unsaturation of synthesized polymers as well as their molecular weight, polydispersity, physical and chemical properties.</p

    On Complex Formation between 5-Fluorouracil and β-Cyclodextrin in Solution and in the Solid State: IR Markers and Detection of Short-Lived Complexes by Diffusion NMR

    No full text
    In this work, the nuclear magnetic resonance (NMR) and IR spectroscopic markers of the complexation between 5-fluorouracil (5-FU) and &beta;-cyclodextrin (&beta;-CD) in solid state and in aqueous solution are investigated. In the attenuated total reflectance(ATR) spectra of 5-FU/&beta;-CD products obtained by physical mixing, kneading and co-precipitation, we have identified the two most promising marker bands that could be used to detect complex formations: the C=O and C-F stretching bands of 5-FU that experience a blue shift by ca. 8 and 2 cm&minus;1 upon complexation. The aqueous solutions were studied by NMR spectroscopy. As routine NMR spectra did not show any signs of complexation, we have analyzed the diffusion attenuation of spin&ndash;echo signals and the dependence of the population factor of slowly diffusing components on the diffusion time (diffusion NMR of pulsed-field gradient (PFG) NMR). The analysis has revealed that, at each moment, ~60% of 5-FU molecules form a complex with &beta;-CD and its lifetime is ca. 13.5 ms. It is likely to be an inclusion complex, judging from the independence of the diffusion coefficient of &beta;-CD on complexation. The obtained results could be important for future attempts of finding better methods of targeted anticancer drug delivery
    corecore